М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dmitrijezhov20
dmitrijezhov20
28.03.2022 17:58 •  Алгебра

Найдите корни уравнения (x^2+x-4)(x^2+x+4)=9

👇
Ответ:
Ильир
Ильир
28.03.2022
Пусть х²+х=t, тогда получаем
(t-4)(t+4)=9
t²-16=9 ⇒ t1=-5; t2=5
х²+х-5 =0 и х²+х+5=0
D=21
x1=\frac{-1- \sqrt{21} }{2}
x2=\frac{-1+\sqrt{21} }{2}

В уравнении х²+х+5=0 D<0, действительных корней нет.
4,7(72 оценок)
Открыть все ответы
Ответ:
crasnowdim2018
crasnowdim2018
28.03.2022

а)2sin²x-3sinx-2=0

Замена  sinx=t

2t²-3t-2=0

D=3²+4×2×2=25

t₁= 3+√D÷4=3+5÷ 4=8÷4=2

t₂=3-√D÷4=3-5÷4=-2÷4=-0,5

Возвращаемся к замене

sinx=2                                   sinx=-0,5

решения нет                          х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z

  -1≤sinx ≥1                            x=(1)⁻k × -π\6 +πn,n∈Z

 

4cos²x+4sinx-1=0

 cos²x=1-sin²x

4( 1-sin²x)+4sinx-1=0

4-4sin²x+4sinx-1=0

-4sin²x+4sinx-1+4=0

-4 sin²x+4sinx+3=0      ÷(-1)

4sin²x-4sinx-3=0

Замена sinx=t

4t²-4t-3=0 

D=4²+4×4×3=16+48=64

t₁=4+√D÷8= 4+8÷8=12÷8=1,5

t₂=4-√D÷8=4-8÷8= -4÷8=-0,5

 Возвращаемся к замене

 sinx=1,5                                 sinx=-1\2
решения нет                         х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z 
  -1≤sinx ≥1                              x=(1)⁻k × -π\6 +πn,n∈Z

 

4,7(13 оценок)
Ответ:
MihailBobr
MihailBobr
28.03.2022
Решим не стандартным

1 ученик - А
2 ученик - Б

Получаем:
А            Б
4             5
5             4
5             5
4             4

В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).

А если прибавить к ним еще одного ученика - С. То:

А          Б          С
4          4           4
5          5           5
4          4           5
4          5           5
5          5           4
5          4           4
4          5           4
5          4           5

В итоге получаем

А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?

А вот что получим:

А                      Б
3                      3
4                      4
5                      5
3                      4
4                      3
4                      5
5                      4
3                      5
5                      3

В итоге, мы получили

Нет смысла, добавлять 3 ученика. Уже  и так можно увидеть закономерность.

В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
(2,2)
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
(2,3)
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
(3,2)

А теперь, выведем формулу:
(a,b)=a^b - где a-число оценок, b-число учеников.

В итоге и получаем:
1 случай:
(2,2)=2^2=4
2 случай:
(2,3)=2^3=8
3 случай:
(3,2)=3^2=9

Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
(a,b)=(4,24)=4^{24}=281474976710656

Второй

Для первого ученика существует 4 варианта:
2,3,4,5 
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
\dispaystyle 4\cdot 4=16 - варианта событий.

Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
16\cdot 4=64 - варианта событий.

И так далее. В итоге получаем, что для 24 учеников существует ровно:

4^{24}=281474976710656 - вариантов событий.
4,4(14 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ