Пусть d и a - решения этого уравнения. Тогда их можно считать взаимно простыми, т.к. иначе можно разделить обе части на квадрат их наибольшего общего делителя. Дальше. Мы видим, что правая часть обязательно делится на 11.Значит а² обязано делиться на 11, т.к.3 на 11 не делится. Так как 11 - простое число, то значит а делится на 11. Но значит вся правая часть делится на 11². Но значит и левая часть обязана делится на 11², а это значит что d² делится на 11. Т.е. и d делится на 11. Т.е. получается что а и d не взаимно просты. Это противоречие.
При разрезании верёвочки длины 1 на равных частей у кваждой будет длина
Для того, чтобы кусочки верёвочки длины 2 после разрезания были бы такой же длины, т.е. нужно разрезать верёвочку длины 2 на частей.
Значит всего будет частей.
Проще говоря, на сколько бы частей не разрезали эти верёвочки, общее число всех кусочков непременно окажется кратным трём, т.е. должно делиться на три. По признаку делимости на три, и сумма цифр такого числа обязательно должна делиться на три.
Если предлагаются варианты ответов: 2014, 2015, 2016, 2017 или 2018, то единственным подходящим вариантом будет 2016, поскольку: