М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kolesnikova19971
kolesnikova19971
21.10.2021 13:22 •  Алгебра

Используя сврйства числовых неравенств, исследуйте функцию на монотонность: у=2х³-3

👇
Ответ:
crystall5555
crystall5555
21.10.2021
Возьмём два фиксированных значения x₁ и x₂ таких, что x₁ > x₂
y(x₁) = 2x₁³ - 3
y(x₂) = 2x₂³ - 3
y(x₁) - y(x₂) = 2x₁³ - 3 - 2x₂³ + 3 = 2x₁³ - 2x₂³ = 2(x₁³ - x₂³) =
2(x₁ - x₂)(x₁² + x₁x₂ + x₂²)
x₁² + x₁x₂ + x₂² > 0 при любых x₁ и x₂
x₁ - x₂ > 0, т.к. x₁ > x₂.
Значит, y(x₁) - y(x₂) > 0.
Отсюда делаем вывод, что функция при любых значениях x убывает.
ответ: функция убывает.
4,6(19 оценок)
Ответ:
ПАПА1111111111
ПАПА1111111111
21.10.2021
Y=2x³-3
x1<x2⇒x³1<x³2⇒2x³1-3<2x³2-3⇒y1<y⇒функция возрастает
4,5(96 оценок)
Открыть все ответы
Ответ:
zajigalka2001
zajigalka2001
21.10.2021

ответ:5

Объяснение:

Покажем, что Петино множество не может содержать больше, чем 5 элементов. От противного: пусть множество содержит не менее 6 элементов. Упорядочим эти элементы по неубыванию модулей:

 |a1|≤|a2|≤...≤|a6|.

Отметим, что среди элементов a2, a3… a6 не может встретиться 0.

Для любой четвёрки a, b, c, d,, являющейся выборкой из элементов a2, a3… a6, справедливо неравенство

abcd≤a41.

При этом, так как среди элементов a2, a3… a6 существует не более одного, совпадающего с a1 по модулю, мы получаем

 a41<|abcd|.

Выберем четвёрку a, b, c, d, так, чтобы abcd=|abcd|.

 Если среди элементов a2, a3… a6 нет отрицательных, то в качестве a, b, c, d, подойдут любые из этих элементов. Если среди элементов a2, a3… a6 есть ровно 1 отрицательный, то в качестве a, b, c, d, подойдут оставшиеся положительные элементы. Если среди элементов a2, a3… a6 есть ровно 2 или 3 отрицательных, то в качестве a, b, c, d, подойдут 2 отрицательных и 2 положительных элемента. Если же среди элементов a2, a3… a6 существует не менее 4 отрицательных, то в качестве a, b, c, d, подойдут любые 4 отрицательных элемента из a2, a3… a6.

Таким образом, мы нашли такие a, b, c, d,, для которых выполняется равенство abcd=|abcd|.

Но тогда abcd<a41<|abcd|=abcd.

Тем самым мы получили противоречие. Значит, Петино множество состоит не более, чем из 5 целых чисел.

Указанный пример показывает, что Петино множество с 5 элементами существует:

 1, 2, 3, 4, −5.

4,4(33 оценок)
Ответ:
darinaggg
darinaggg
21.10.2021

В решении.

Объяснение:

Объяснение:

Одночленом называется выражение, которое содержит числа, натуральные степени переменных и их произведения, и при этом не содержит никаких других действий с этими числами и переменными.  

Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.  

Укажите степень одночлена −9x⁵y⁷.

Степень одночлена: 5+7=12.

4,4(41 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ