Здравствуйте. Для решения данного задания следует заметить, что формула практически напоминает полный квадрат выражения. Однако это бы случилось если бы последнее число 25 было бы со знаком +. Поэтому представим -25 как 25-50. Получим 9x^2 + 30x + 25 - 50. Cвернем три первых в полный квадрат (3x + 5)^2 - 50. Полный квадрат всегда является неотрицательным числом, а его минимальное значение 0 при x = -5/3. Соотвественно так как этот x наименьшая переменная то для нее посчитаем и наименьшее выражение. Оно будет равно -50.
D:xпринадлежит R. y принадлежит R Возьмите производную и приравняйте нулю=>найдете точки, в которых есть экстремум. Если производная меняет знак с + на - ,то это максимум, если с - на +, то минимум. Где + в интервале функция возрастает, где минус - убывает. Ищите вторую производную и приравняйте нулю=> найдете точки перегиба. Если + на интервале a,b, то функция выпуклая вниз, если -, то выпуклая вверх. Если меняется знак, то это точка перегиба. Потом смотрите предел функции при x на беск-ть на наличие верт. ассимпоты, а также посмотрите k и b на наличие наклонной ассимптоты. k=lim(f(x)/x) b=lim(f(x)-kx) где x->беск-ть. А дальше выберайте точки какие-нибудь и стройте в соответствии с тем, что уже нашли.
x, x+1, x+2, x+3 - четыре последовательных числа
x*(x+1)-произведение первых двух
(х+2)(х+3)-произведение следующих
Составим уравнение:
х(х+1)=(х+2)(х+3)-38
x^2+x=x^2+5x+6-38
x-5x=-32
-4x=-32
x=8
x+1=9
x+2=10
x+3=11
Проверка: 8*9=72
10*11-38=110-38=72
ответ: 8, 9, 10, 11