Используем формулу косинуса двойного угла cos2x=1-2sin²x и преобразуем неравенство к виду |18sin²x+6(a-2)sinx-2a-5|≤9 или -9≤18sin²x+6(a-2)sinx-2a-5≤9 Если неравенство должно быть выполнено для всех x, то значит в частности и для x=0 оно должно быть верным. Если x=0, то и sinx=0. Подставим 0 в неравенство: -9≤18*0+6(а-2)*0-2а-5≤9 -9≤2а+5≤9 -7≤a≤2 - мы получили первое ограничение на а. Пусть теперь x=π/2: -9≤18+6(a-2)-2a-5≤9 -5/2≤a≤2 - мы еще больше ограничили множество возможных значений а, но это мало что дало. А если x=3π/2? Тогда -9≤18-6(a-2)-2a-5≤9 2≤a≤17/4 Вот теперь повезло. В самом деле, если а<2, то неравенство не будет верным для x=3π/2, а если a>2, то для x=0 и π/2, между тем нам надо чтобы оно выполнялось для любого x, а отсюда следует что подходит только а=2. Остается проверить эту двойку: |9cos2x-6(2-2) sinx+2*2-4| ≤ 9 9|cos2x|≤9 |cos2x|≤1 Очевидно, что неравенство верно для всех х, а значит двойка нам подходит. ответ: а=2. Вообще обычно такие примеры решаются более сложными методами. Здесь просто все сложилось удачно.
1) путь сначала было х соли и у воды x/(x+y)=0,35 x+y -масса раствора когда добавили соль, стало (x+110)/(x+110+y)=0,6 решаем эту систему x=0,35(x+y) x+110=0,6(x+y+110)
x=0,35x+0,35y 0,65x=0,35y y=0,65x/0,35=13x/7
x+110=0,6(x+13x/7+110) x+110=0,6(20x/7+110) x+110=12x/7+66 12x/7-x=110-66 4x/7=44 x=44*7/4=77 y=77 *13/7=11*13=143 x+y=77+143=220 ответ: первоначальная масса раствора 220г в растворе первоначально было соли 77г
2) в певой бочке было х литров, а во второй у x+y=798 x-15=y-57 решаем эту систему y=798-x x=y-42 x=798-x-42 2x=756 x=378 y=798-378=420
ответ: в первой бочке было первоначально 378л бензина; во второй бочке было первоначально 420л бензина.