1) Область определения { x^2 - 1 > 0 { log(1/2) (x^2 - 1) > 0 Функция y = log(1/2) (x) - убывающая, поэтому { (x + 1)(x - 1) > 0 { x^2 - 1 > 1; x^2 - 2 > 0 Получаем { x< -1 U x > 1 { x < -√2 U x > √2 Область: x < -√2 U x > √2 2) Решаем неравенство Функция y = log3 (x) - возрастающая, поэтому log3 (log(1/2) (x^2 - 1)) < 1 = log3 (3) log(1/2) (x^2 - 1) < 3 = log(1/2) (1/8) Функция y = log(1/2) (x) - убывающая, поэтому x^2 - 1 > 1/8 x^2 > 1 + 1/8 = 9/8 |x| > 3/√8 ~ 1,06 < √2 ответ: x < -√2 U x > √2 Неравенство вообще не имеет значения, все определяет область определения, простите за тавтологию.
Выпишем все двузначные квадраты: 16, 25, 36, 49, 64, 81. Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649 Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.: Начинающееся на 3: 3649 на 4: 49 на 5 - таких чисел нет на 6: 649 на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7. на 8: - 81649 на 9: - нет. Итак, наибольшее: 81649.
k=3
m=5
Собственно все)