Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором 10- наименьшее двузначное число 10:4=2(ост 2) 11:4=2(ост 3) 11 - первый член прогрессии (либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство так как при делении на 4 остаток 3 общая форма 4k+3 4k+3>=10 4k>=10-3 4k>=7 4k>=7:4 k>=1.275 наименьшее натуральное k=2 при k=2: 4k+3=4*2+3=11 11 -первый член )
далее разность прогрессии равна числу на которое делим т.е. в данном случае 4
далее ищем последний член прогрессии 99- наибольшее двузначное 99:4=24(ост3) значит 99 - последний член прогрессии (либо с оценки неравенством 4l+3<=99 4l<=99-3 4l<=96 l<=96:4 l<=24 24 - Наибольшее натуральное удовлетворяющее неравенство при l=24 : 4l+3=4*24+3=99 99- последний член прогрессии ) далее определяем по формуле количество членов и находим сумму по формуле ответ: 1265
1. Приведем подобные члены. Я их сгруппирую для наглядности: Различия между ними - это степень и сама буква неизвестного значения: "a" и "b". Далее просто складываем и вычитаем в зависимости от знака подобные члены. Все упрощение, условно, сводится в 3 действия, так как 3 вида значений: 1) 2) 3) - Тут вынес знак минуса за скобку, чтобы было понятно, что разность -4ab-3ab дает сумму с отрицательным знаком. В итоге записываем полученное выражение: На этом можно остановиться, можно вынести одинаковые значения за общую скобку. Этим значением является буква b, тогда запись выражения примет вид: Но нужно помнить, что когда мы выносим одинаковые члены за скобку, то от чего мы их отделяем - делим на то самое отделяемое значение. Если расписать действие переноса буквы b за скобку по шагам, то будет более понятно:
Решение без пояснений: --------------------------------------------------------------------- 2. Тут самое главное правильно раскрыть скобки с учетом знаков перед ними, а далее все как в первом решении. Начинать раскрытие скобок нужно изнутри, то есть от выражения "" Распишу раскрытие скобок по действиям: 1) 2) 3) В итоге получили выражение под пунктом 3. Далее, приводя подобные члены получим: Далее можем также вынести за скобку одинаковые члены, но в этом нет смысла, так как не принесет упрощения.
cosa*cosb+sina*sinb/sina*cosa *2sinacosa= 2cosa*cosb+2sina*sinb=2(cos(a-b))=2cos(a-b) Доказано!