пусть пешеход, вышедший из А, после встречи км. Тогда его скорость v1=S/t =
= 3x/2 км/час (40 мин = 2/3 час).
Пешеходу, вышедшему из В, после встречи пришлось пройти x + 2 км. Тогда его скорость
v2=S/t = 2(x+2)/3 км/час (1 час 30 мин = 3/2 час).
До встречи первый затратил время t = (x+2)/v1 = 2 * (x+2)/(3x).
До встречи второй затратил время t = x/v2 = 3 * x/(2(x+2)). Времена затраченные до встречи равны. Составляем уравнение.
(2x + 4)/3x = 3x/(2x+4)
(2x + 4)² = 9x²
либо 2x + 4 = 3x. x=4, либо
2x + 4 = -3x. x=-4/5 (не имеет смысла).
Искомое расстояние S = x + x + 2 = 4 + 4 + 2 = 10 км
Искомые числа а, b и с образуют геометрическую прогрессию,
числа (а+1), (b+1) и (с-4) образуют арифметическую прогрессию.
Составим систему:
{a + b + с = 35 [по условию]
{(c-4)-(b+1) = (b+1)-(a+1) [свойство арифметической прогрессии]
{a + b + с = 35
{c - 4 - b - 1 = b + 1 - a - 1
{a + b + с = 35
{а - 2b + с = 5
вычтем нижнее уравнение из верхнего, получим:
3b = 30
b = 10 - второе число
Сумма оставшихся двух чисел а и с равна 35 - 10 = 25
По свойству геометрической прогрессии: b² = а*с
Снова составим систему:
{а + с = 25 ⇒ с = 25-а
{а * с = 10²
подставляем значение с в нижнее уравнение, решаем:
а(25-а) = 10²
25а - а² - 100 = 0 |*(-1)
a² - 25a + 100 = 0
D = 625 - 400 = 225 = 15²
a₁ = (25-15)/2 = 5 ⇒ c₁ = 25 - 5 = 20
a₂ = (25+15)/2 = 20 ⇒ c₂ = 25 - 20 = 5
Получили два ответа:
1) а=5; b=10; с=20
2) а=20; b=10; с=5
Проверим ответы.
1)
5; 10; 20 - геометрическая прогрессия (знаменатель = 2)
к первому и второму числам прибавим 1, от третьего отнимем 4, получим:
6; 11; 16 - арифметическая прогрессия (разность = 5)
2)
20; 10; 5 - геометрическая прогрессия (знаменатель = 1/2)
к первому и второму числам прибавим 1, от третьего отнимем 4, получим:
21; 11; 1 - арифметическая прогрессия (разность = -10)
2sin^2x-sinxcosx-cos^2x=0 |÷cos2^x
2tg^2x-tgx-1=0
tgx=t
2t^2-t-1=0
D=1-4×2×(-1)=1+8=9
x1=1-3/4=-2/4=-1/2
x2=1+3/4=1
tgx=-1/2
x=arctg (-1/2)+pi×n
tgx=1
x=pi/4+pi×n ,n $Z