Объяснение:
1.
а) a^2+3 / a^3 - 3-a / 3a = 3a^2+9-3a^2+a^3 / 3a^3 = a^3+9 / 3a^3
б) x / x-1 +x / x+1 = x^2+x+x^2-x / x^2-1 = 2x^2 / x^2-1
в) x / x-2y - 4y^2 / x^2-2xy = x / x-2y - 4y^2 / x(x-2y) = x^2 - 4y^2 / x(x-2y) = (x-2y)*(x+2y) / x(x-2y) = x+2y / x
г) 2a + b - 4ab / 2a+b = (2a(2a+b) + b(2a+b) - 4ab) / 2a+b = (4a^2+2ab+2ab+b^2 - 4ab) / 2a+b = 4a^2+b^2 / 2a+b = (2a+b)*(2a-b) / 2a+b = 2a-b
а) a+4 / 4a - a-2 / a^2 = a^2+4a-4a+8 / 4a^3 = a^2+8 / 4a^3
б) 3x / x+3 + 3x / x-3 = 3x^2-9x+3x^2+9x / x^2-9 = 6x^2 / x^2-9
в) 9x^2 / 3xy-y^2 - y / 3x-y = 9x^2 / y(3x-y) - y / 3x-y = 9x^2-y^2 / x(3x-y) = (3x-y)*(3x+y) / x(3x-y) = 3x+y / x
г) a-3b+6ab / a-3b = (a^2-3ab-3ab+9b^2+6ab) / a-3b = a^2+9b^2 / a-3b = (a+3b)*(a-3b) / a-3b = a+3b
и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда: