Для определения координат точек пересечения нужно приравнять правые части обоих уравнений найти значения "х" при которых выполняется равенство, затем найденные х подставить в одно из уравнений (удобнее по расчетам в первое) и найти значения у соответствующие этим значениям. Полученные пары х и у и будут координатами точек пересечения. Предварительно можно сказать, что первый график - прямая, проходящая через начало координат, а второй гипербола находящаяся в первом и третьем квадрантах.
Рассмотрим функцию Наша функция задана в неявном виде, то частные производные функции вычисляются по формулам:
Вычислим значение частных производных в точке с координатами Запишем уравнение касательной плоскости к поверхности в точке - уравнение касательной в общем виде.
- уравнение касательной плоскости к поверхности в точке с координатами
Уравнение нормали в общем виде: Пользуясь этой формулой, имеем каноническое уравнение нормали к поверхности в точке
- каноническое уравнение нормали к поверхности в точке с координатами