Решение системы уравнений a= -11
d= -8
Объяснение:
3(a−d)−(a+d)=10
2(a−d)−(a+d)=13
Раскроем скобки, приведём подобные члены:
3a-3d-a-d=10
2a-2d-a-d=13
2a-4d=10
a-3d=13
Выразим а через d во втором уравнении, подставим выражение в первое уравнение и вычислим d.
a-3d=13
a=13+3d
Но прежде разделим первое уравнение на 2 для удобства вычислений:
2a-4d=10/2
а-2d=5
13+3d-2d=5
d=5-13
d= -8
a=13+3d
a=13+3*(-8)=13-24
a= -11
Решение системы уравнений a= -11
d= -8
Проверка:
3(-11+8)-(-11-8)=3*(-3)+19= -9+19=10 10=10
2(-11+8)-(-11-8)=2*(-3)+19= -6+19=13 13=13, всё верно.
где
Пусть n чётно, т.е. n = 2k. (Для нечётного n доказательство аналогичное). Сгруппируем члены с чётными и нечётными степенями:
Рассмотрим многочлен g(x) с чётными степенями. Т.к. любое число в чётное степени положительно, то:
Покажем, что g(x) функция чётная. Для этого, вместо х подставим (-х):
Итак, доказали, что функция g(x)=g(-x) чётная.
Рассмотрим многочлен h(x) с нечётными степенями. Отрицательное число в нечётной степени отрицательно.
Покажем, что функция h(x) нечётная, для чего вместо х подставим (-х):
Итак, доказали, что функция h(x)=-h(-x) нечётная.
После всего сказанного, имеем:
f(x) = g(x) + h(x)
функция f(x) представима в виде суммы чётной g(x) и нечётной h(x) функций.
2. А теперь углубимся в дебри. Если функция симметрична относительно начала координат, то её можно представить в виде суммы чётной и нечётной функций.
Запишем нашу функцию в таком виде:
В правильности такой записи легко убедиться, если в правой части произвести сложение.
Рассмотрим функцию:
Выясним, чётная или нет такая функция, для чего опять подставляем вместо икса минус икс:
Функция g(x) чётная.
Рассмотрим функцию:
и выясним её чётность.
Функция h(x) нечётная.
Таким образом,
Что и требовалось доказать.
* Более подробно см. соответствующий материал, а для 9 класса достаточно этого.