1)7.2км/ч=2м/с
2)5.4км/ч=1.5м/с
3)2.4км/м=40м/с
F - первообразная для f, если f = F'. Но так как производная от суммы - это сумма производных, и производная от числа равна нулю, то можно написать f = F' = (F+C)', где С - любое число.
То есть первообразная - это не какая-то одна функция, это класс функций. Для всех разных чисел С - будет разная первообразная F + C, и производная от каждой из них равна f.
У вас в задаче табличные вещи, поэтому гляньте в табличке первообразных.
В общем, первообразная будет
F(х) = 4x + sin(x) + C
Надо, что б если подставить вместо икса П/6, F получилась равной П.
sin(П\6) = 1/2, так как это синус 30 градусов
Получается равенство
П = 4*П\6 + 1\2 + С
6П = 4П+3 + 6С
С = (2П-3)\6
значит F = 4x + sin(x) + (2П-3)/6
Построение графиков функций
Сервис поддерживает возможность построения графиков функций как вида , так и вида . Для того, чтобы построить график функции  на отрезке  нужно написать в строке: f[x],{x, a, b}. Если Вы хотите, чтобы диапазон изменения ординаты  был конкретным, например , нужно ввести: f[x],{x, a, b},{y, c, d}.
Примеры
x^2+x+2, {x,-1,1};
x^2+x+2, {x,-1,1},{y,-1,5};
Sin[x]^x, {x,-Pi,E};
Sin[x]^x, {x,-Pi,E},{y,0,1}.
Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:f[x]&&g[x]&&h[x]&&…&&t[x],{x, a, b}.
Примеры
x&&x^2&&x^3, {x,-1,1},{y,-1,1};
Sin[x]&&Sin[5x]&&Sin[10x]&&Sin[15x], {x,-5,5}.
Для того, чтобы построить график функции  на прямоугольнике , нужно написать в строке: f[x, y],{x, a, b},{y, c, d}. К сожалению, диапазон изменения аппликаты  пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции  Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).
Примеры
Sin[x^2+y^2],{x,-1,-0.5},{y,-2,2};
xy,{x,-4,4},{y,-4,4}.
7,2*1000/3600=2м/с
5,4*1000/3600=1,5м/с
2,4*1000/60=40м/с