Xn= 8 n-4
Xn= 4*3
Объяснение:
Последовательности можно задавать различными среди которых особенно важны три: аналитический, словесный и рекуррентный. В этой задаче рассмотрим два задания последовательности:
рекуррентное задание последовательности:
это такой задания последовательности, при котором указывают правило, позволяющее вычислить n-й член последовательности, если известны её предыдущие члены.
Аналитическое задание последовательности:
говорят, что последовательность задана аналитически, если указана формула её n-го члена yn=f(n).
1. Рассмотрим заданную рекуррентным последовательность x1=4,xn=xn−1+8, n=2,3,4...
n-й член последовательности получается из предыдущего (n−1)-го члена прибавлением к нему числа 8.
Тем самым получаем последовательность:
4; 12; 20; 28...
Для того чтобы последовательность можно было задать аналитически, преобразуем выражение:
xn=4+8(n−1)=8n−4.
Итак, мы получили формулу n-го члена заданной последовательности:
xn=8n−4.
2. Рассмотрим вторую, заданную рекуррентным последовательность x1=4,xn=3xn−1, n=2,3,4...
n-й член последовательности получается из предыдущего (n−1)-го члена умножением его на 3.
Тем самым получаем последовательность:
4; 12; 36; 108...
И формула n-го члена заданной последовательности:
xn=4⋅3n−1.
(А-5)(а-1)-(а+2)(а-3)=(а²-а-5а+5)-(а²-3а+2а-6)=(а²-6а+5)-а²+а+6=5а+11
2) подставляем
Если а= - 2 3/5 то, 5×(-2 3/5)+11= -13+11= - 2
ответ - 2