График построен, смотрите во вложениях.
а) наименьшее и наибольшее значение можно посмотреть по графику
Наименьшее y=2;
Наибольшее y=sqrt(7) (sqrt(число) - корень квадратный из числа)
б)Координаты пересечения с прямой х-2γ=0
Для начала, приведем эту прямую к нормальному виду.
2y=x
y=x/2
Теперь посмортим на его свойства, это прямая, проходящяя через начало координат, точка(0;0) (уже 1 точка) и через точку (4;2) черет эту же точку проходит и наш график y=sqrt(x)
Значит всего 2 точки пересечения (0;0) и (4;2)
Почему нету больше точек? Если построить график функции прямой, то мы увидим что она гараздо прогрессивней идет вверх че sqrt(x) , значит они бошльше не пересекуться, и точек пересечения не будет.
|y
|x
| .
| .
| .
| .
| .
| .
0
(ось у сплошной. соединишь точки - получишь график - ветвь параболы, лежащая на боку)
а) наиб. и наим. значение находим через производную
(-√x)'=-1/(2√x)
приравниваем к нулю -1/(2√x)=0. нет корне. находим значение функции на концах отрезка.
y(1)=-1
y(6)=-√6
-1 наиб. знач.
б) так как пересекаются, значит х1=х1, у1=у2
y*y+3+4y=0
D=16-12=4
y1=(-4+2)/2=-1
y2=-3
оба подходят
находим х1 и х2
х1=1
х2=9
ответ:а)-1, б)(1;-1), (9:-3).
а)x=-2/3 => y=3*(-2/3)² + 2*(-2/3)-5 = 3*4/9 - 4/3 - 5 = 4/3 - 4/3 - 5 = -5;
y=-5;
б)0=3x²+2x-5
D=b²-4ac, D=2² - 4 * 3 * (-5)=64;
x1=(-b-√D)/2a, x2=(-b+√D)/2a
x1=(-2-8)/2*3=-5/3;
x2=(-2+8)/2*3=1.
x1=-5/3 (целые сам выведешь) и x2=1- нули функции.
№3 К этому номеру будет фотография (а)
б)при х∈(-∞;-2)∪(2;+∞);
в) функция убывает при x∈[0;=∞).
№4 x²-3x+2
Приравняю к нулю => x²-3x+2=0;
D=b^2-4ac,
D=(-3)²-4*2*1=1;
x1=(-b-√D)/2a, x2=(-b+√D)/2a
x1=(3-1)/2*1=1, x2=(3+1)/2*1=2
ответ: 1;2.
№5 y=2(x-4)²-2
Тут даже не заморачивайся тут просто можно сразу написать, на всякий случай объясню как это работает: 1)y=ax²+n получен из y=ax² параллельным переносом вдоль оси Oy на n единиц вверх (при n>0) и на n единиц вниз (при n<0).2)y=a(x-m)² получен из y=ax² параллельным переносом вдоль оси Ox на m единиц вправо (при m>0) и на m единиц влево (при m<0).
№6 Ты мне сказал не решать.
№7 в-вершина, xв=-1, yв=5;
y=x²+px+q;
xв=-b/2a=-p/2;
-p=xв*2;
-p=-1*2=-2;
p=2;
Подставим все имеющиеся переменные в функцию y=x²+px+q:
5=(-1)²+2*(-1)+q;
5=1-2+q;
5=q-1;
q=5+1=6
ответ: при p=2 и q=6 вершина параболы y = x2 + pх + q находится в точке (-1;5).