(100%+6%): 100%=1,06 - во столько раз возрастёт вклад за 1 год в первом банке (100%+8%): 100%=1,08 - во столько раз возрастёт вклад за 1 год во втором банке 1 банк 2 банк вклад х грн (1200-х) грн через год на счёте 1,06*х грн 1,08*(1200-х) по условию ,через 1 год на счетах в банках стало 1200+80=1280 грн. составим уравнение: 1,06х+1,08(1200-х)=1280 1,06х+1296-1,08х=1280 -0,02х=-16 х=800 (грн)- положили в 1 банк 1200-800=400 (грн)- положили во второй банк
Так как члены представляют собой арифметическую прогрессию, то a2=a1+d, a5=a1+4d, где d - знаменатель арифметической прогрессии. Но так как эти же члены являются членами геометрической прогрессии, то a2=a1*q и a5=a1*q², где q - знаменатель геометрической прогрессии. По условию, a2+1=a1+1+d1, a5-3=a1+1+2d1, или a2=a1+d1, a5=a1+4+2d1. Из первого уравнения находим d1=d. Так как a5=a1+4d, то из второго уравнения следует уравнение 4d=4+2d, откуда d=2. Теперь, заменяя a2 на a1+2 и a5 на a1+8, получаем уравнения a1+2=a1*q, a1+8=a1*q². Из первого уравнения следует a1=2/(q-1). Подставляя это выражение во второе уравнение, приходим к квадратному уравнению q²-4q+3=0. Дискриминант D=(-4)²-4*1*3=4=2². Отсюда q=(4+2)/2=3 либо q=(4-2)/2=1. Но если q=1, то все члены геометрической прогрессии, а с ней и все члены исходной арифметической прогрессии, были бы равны, что было бы возможно лишь при d=0. Но так как d=2≠0, то q≠1. Значит, q=3. Тогда a1=2/(3-1)=1, и искомая сумма S100=100*(a1+a100)/2=50*(a1+a100). Но a100=a1+99d=1+99*2=199, и тогда S100=50*(1+199)=10 000. ответ: 10 000.
X^2-xy-2x+2y=(x^2-2x)-(xy-2y)=x(x-2)-y(x-2)
(x-2) у них общее,значит
x(x-2)-y(x-2)=(x-2)(x-y)