Вначале необходимо найти производную и приравнять ее к 0 для нахождения экстремумов:
y' = (6cosx)' = -6*sinx = 0, sinx=0, x=pi/2 + pi*k
Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6
Объяснение:
Пусть х - скорость теплохода в неподвижной воде, тогда его скорость по течению равна х+4, а против течения х-4.
Время движения по течению 384/(х+4), время движения против течения 384/(х-4))
Составим уравнение 384/(х+4) +384/(х-4) + 8 = 48
96/(х+4) +96/(х-4) = 10
96х - 96*4 + 96х +96*4 = 10(х^2-16)
10 x^2 - 192x - 160 = 0
5 x^2 - 96x - 80 = 0
D =96^2 +4*80*5 = 9216 + 1600 = 10816, sqrt(D) = 104
x1 = (96+104)/10 = 20
x2 = (96-104)/10 <0 отрицательной скорости не может быть
ответ: скорость теплохода в неподвижной воде равна 20км/ч
2.х=-в/2a= -6/(-2)=3
y=0
А (3;0)-вершина параболы
3.персечение с осью Оу
х=0
у=-9
В (0;-9)
4.пересечение с осью Ох
у=0
-х2+6х-9=0
D=36-36=0 одн корень
x=-b/2a
х=-6/-2=3
С (3;0)
Х|-3|-2|-1|0|1|2|3|
У| 9| 4| 1|0|1|4|9|