S = Vt, где S — расстояние, V — скорость, а t — время.
Итак, рассуждаем. Грузовой автомобиль проехал неизвестное расстояние за 8 часов, двигаясь со скоростью 60км/ч. Значит, чтобы найти расстояние, которое он проехал, необходимо время (8 часов) умножить на скорость (60км/ч). 8ч. × 60км/ч. = 480 километров — расстояние, которое проехал грузовой автомобиль.
Разбираемся с легковой машиной. S = Vt —> t = , где t — время, S — путь, а V — скорость. Расстояние мы вычислили, а скорость легковой машины дана в условии. t = = 4 часа — время, потраченное легковой машиной на путь.
Мы видим, что скорость легковой машины ровно в 2 раза больше скорости грузового автомобиля —> следовательно, легковая машина и проехала это расстояние в 2 раза быстрее, чем грузовой автомобиль. Исходя из выводов, найти время, потраченное легковой машиной на путь, очень просто: необходимо 8 часов разделить на 2, что равно 4 часа.
Для нахождения наибольшего значения функции х^3+11х^2-80х на отрезке [-17;-8] надо производную фунцйии приравнять 0: f'=3x²+22x-80=0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=22^2-4*3*(-80)=484-4*3*(-80)=484-12*(-80)=484-(-12*80)=484-(-960)=484+960=1444; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√1444-22)/(2*3)=(38-22)/(2*3)=16/(2*3)=16/6=8//3≈2.66666666666667; x_2=(-√1444-22)/(2*3)=(-38-22)/(2*3)=-60/(2*3)=-60/6=-10. Первый корень не входит в определяемую область. Максимум = (-10)³+11*(-10)²-80*(-10) = -1000+1100+800 = 900.
x1+x2=2
x1*x2=-15
x1=5
x2=-3