 
                                                 
                                                 и
 и  . Чтобы найти координату
. Чтобы найти координату  точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
 точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
 можем найти подставив
 можем найти подставив  в выражение первой функции
 в выражение первой функции  , а можно сделать проще. Так как пересечение будет с прямой
, а можно сделать проще. Так как пересечение будет с прямой  , то и точки пересечения будут иметь координату
, то и точки пересечения будут иметь координату  . Итак, получилось две точки пересечения с координатами:
. Итак, получилось две точки пересечения с координатами:  .
.![[0;1]](/tpl/images/0561/5883/90495.png) (этот отрезок по оси
 (этот отрезок по оси  ), найдем значения
), найдем значения  на концах этого отрезка:
 на концах этого отрезка:

 
                                                 
                                                35 км/ч
Объяснение:
Дано:
S₁ = 35 км
S₂ = 34 км
t = 2 ч
Vр = 1 км/ч
V - ?
1)
Заметим, что собственная скорость лодки равна скорости ее движения по озеру:
V₁ = V
Время, затраченное на движение по озеру:
t₁ = S₁ / V₁
или
t₁ = S₁ / V.
2)
Время, затраченное на движение по реке.
Заметим, что река впадает в озеро, а это значит, что лодка двигалась против течения: V₂ = V - Vp
t₂ = S₂ / V₂ или
t₂ = S₂ / (V - Vp)
3)
Общее время движения:
t = t₁ + t₂
или
t = S₁ / V₁ + S₂ / (V - Vp)
Подставляем данные и решаем уравнение:
2 = 35 / V + 34 / (V - 1)
2·V·(V-1) = 35·(V-1) + 34·V
2·V² - 2·V = 35·V - 35 +34·V
2·V² - 71·V + 35 = 0
Решая это квадратное уравнение, получаем:
V = (71-69)/4 = 0,5 км/ч (слишком маленькая скорость...)
V = (71+69)/4 = 35 км/ч
 
                                                 
                                                 
                                                 
                                                
f '(x) = cosx - sinx, f '(0)=1-0=1, f (0) = 0+1=1,
y=1+1*(x-0), y=x.