1.Угловой коэффициент данной прямой к=1, угловой коэффициент искомой касательной равен f'(x₀), где х₀-абсцисса точки касания. Т.к. искомая касательная и данная прямая параллельны, то их угловые коэффициенты равны. f'(x₀)=1;
2. f'(x)=2х-3; Тогда 2х₀ - 3=1, откуда х₀=4/2=2; Итак, на графике функции существует точка с абсциссой х₀=2 , касательная в которой параллельна данной прямой.
При х₀=2 имеем f(x₀)=2²- 3*2+2=4-6+2=0; .
Общий вид уравнения касательной, проходящей через точку с абсциссой х₀, такой у=f(x₀)+f'(x₀)(x-x₀); Подставим все необходимое в формулу, получим
у=0+1*(х-2); у=х-2 -искомое уравнение касательной.
ответ у=х-2
t=40*(x/(u-3))=60*(x/(u+3))
40/(u-3)=60/(u+3)
2/(u-3)=3/(u+3)
2*(u+3)=3*(u-3)
2u+6=3u-9
u=15 км/ч.
ответ: 15 км/ч