у=(х-5)²·(х-3)+ 10
y' = 2·(х-5)·(х-3) + (х-5)²
ищем минимум
2·(х-5)·(х-3) + (х-5)² = 0
(х-5)·(2х - 6 + х - 5) = 0
(х-5)·(3х - 11) = 0
х₁ = 5, х₂ = 11/3 = 3 2/3
Исследуем знак производной в интервалах
+ - +
11/3 5
У'(3) = -2·(-2) = 4 > 0 y возрастает
У'(4) = -1·1 = -1 < 0 y убывает
У'(6) = 1·7 = 7 > 0 y возрастает
Точка минимума х₁ = 5
У min = у(5) = (5-5)²·(5-3)+ 10 = 0·2 + 10 = 10
На промежутке от 4 до 8 функция ведёт себя так:убывает при х∈[4 ; 5] и возрастает при ∈[5 ; 8].
Следовательно, наименьшее значение функции совпадает с её минимальным значением
ответ: у наим = 10
5050
Объяснение:
Карл Фридрих Гаусс заметил интересную закономерность, что если сгруппировать числа в пары получается алгоритм , благодаря которому можно быстро сложить числа от 1 до 100 .
Рассмотрим этот алгоритм :
1) Необходимо найти количество пар в ряду натуральных чисел. В нашем ряду 100 чисел , значит количество пар будет :
100 : 2 = 50 пар
2) Необходимо сложить первое и последнее число в ряду , в нашем случае это :
100 + 1 =101
3) Умножить сумму первого и последнего чисел в ряду на количество пар в ряду :
101 * 50= 5050
Получаем , что сумма чисел от 1 до 100 будет 5050
Сегодня этот алгоритм называется - правило Гаусса и широко применяется при устном счете