Определить промежутки монотонности функции, не используя производную функции.
y = (x² - x - 20)² - 18
=================================
Область определения функции D (y) = R
y = (x² - x - 20)² - 18
Квадратичная функция в квадратичной функции
y = f(z); z = g(x)
Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.
- координата вершины
z = 0 - координата вершины параболы
x₁ = -4; x₂ = 5 - координаты вершин параболы
Таким образом, есть три точки, которые определяют промежутки монотонности функции y = (x² - x - 20)² - 18.
x₁ = -4; x₀ = 0,5; x₂ = 5
x ∈ (-∞; -4] - функция убывает : y(-5) > y(-4)
x ∈ [-4; 0,5] - функция возрастает : y(-4) < y(0)
x ∈ [0,5; 5] - функция убывает : y(1) > y(2)
x ∈ [5; +∞) - функция возрастает : y(5) < y(6)
Здравствуй!
У тебя есть четкая граница: один график рисуешь, если , другой - при
.
Для удобства можно провести пунктирную вертикальную линию, пересекающую координату 3 на горизонтальной оси Ох (или, если быть точным, построить график функции ). Это будет линией, разделяющих два графика.
Тогда ты строишь первый график, то есть , на левой части от этой границы, ведь именно левее у нас иксы меньше 3, а второй график,
, справа от неё.
Обычно в подобных заданиях графики сходятся в одной точке на границе и получается красивая картинка. Однако так происходит не всегда.
В твоём же случае графики не сходятся в одной точке (кстати ты правильно начал строить, к ответу я прикрепил скриншот того, как должно получиться), а потому ты внимательно смотришь, к какому из графиков точка 3 принадлежит, а к какому - нет.
В данном случае точка с абсциссой 3 (т.е. с иксовой координатой) принадлежит первому графику, на "границе" закрась эту точку, это будет означать то, что здесь график прерывается
А вот второму графику точка с абсциссой 3 не принадлежит; тебе нужно на "границе" "выколоть" эту точку - то есть обозначить не закрашенным кружком, а пустым кружком.
Успехов!
a³-1=(a-1)(a²+a+1)
y³+1000=(y+10)(y²-10y+100)
b³-8=(b-2)(b²+2b+4)
9-a⁴=(3-a²)(3+a²)