A cos²x + B sin x cos x + C sin²x = d A cos²x + B sin x cos x + C sin²x = sin²x + cos²x Переносишь из правой части в левую E cos²x + B sin x cos x + F sin²x = 0 | :cos²x ( или sin²x) Удобнее будет, если в итоге получиться tg x, значит делим на sin²x E tg²x + B tg x + F = 0 tg x = t Et² + Bt + F = 0 А дальше дискриминант, или как там удобнее (Я т.Виета пользуюсь) Получаем корни t, допустим t = H ; O Приравниваем наш tg x к корням tg x = H или tg x = O Это решить уже не составит труда x = arctg(H) + n, n ∈ Z x = arctg(O) + n, n ∈ Z Само собой, если tg = 1, то это /4+n, n ∈ Z, и т.п Это я общее привёл
y=x^3-9x^2+15x-3. y'(x) = 3x^2 - 18x + 15= 0; x^2 - 6x+5 =0; x1 = 1; точка минимума x2 = 5 точка максимума. Функция возрастает на промежутках (-∞ ; 1) U (5 ; ∞ ) Убывает на промежутке (1; ; 5 ) Т\очка х 5 принадлежит заданному интервалу, то есть именно в этой точке и будет наибольшее значение функции. ТОчка минимума не принадлежит заданному интервалу, поэтому надо проверить значения функции на концах интервала. f (2) = 8-9*4+15*2-3= -1; f (7)= 243 - 8* 49 + 15 * 7 - 3= сосчитайте сами и выберите то значение, что побольше.
2)x^3 – x=x(x^2-1)
3)1 +c^3=(1+c)(1-c+c^2)
4)-5x^5 -15x^3= -5x^3*(x^2-3)
5)58x -29y=29(2x-y)
6)8ab – 6ac=2a(4b-3c)
7)5x^2+3x=x(5x+3)
8)7x^2 – 0,28x=0.28x(25x-1)
если что пишите