М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Suhih77
Suhih77
30.08.2021 06:11 •  Алгебра

Раскройте скобки и выражение 9(2p-4q-7)+5(7q-4p+13)

👇
Ответ:
valera228005
valera228005
30.08.2021
9(2p-4q-7)+5(7q-4p+13)=18p-36q-36+35q-20p+65=-2p-q+2.
4,4(24 оценок)
Открыть все ответы
Ответ:
24556
24556
30.08.2021
y (x)= |2 - \sqrt{5 + |x| } | \\
областью определения y(x) будет x€R
(5+|x|>0 при любых x)

Теперь найдем множество значений, исходя из свойств модуля и квадратного корня
|x| \geqslant 0
5 + |x | \geqslant 5
\sqrt{5} \geqslant \sqrt{5 + |x| } \geqslant 0
2 - \sqrt{5 + |x|} \leqslant 2 - \sqrt{5}
y(x) = |2 - \sqrt{5 + |x|} | \geqslant \\ \geqslant | 2 - \sqrt{5} | = \sqrt{5} - 2 0
как мы видим нулей функции у(х) нет

теперь раскроем внутренний модуль,
а затем внешний

y (x)= |2 - \sqrt{5 + |x| } | \\ = \left \{ |{ 2 - \sqrt{5 + x} |} , x \geqslant 0 \atop |{2 - \sqrt{5 - x} | , \: x < 0} \right. = \\ = \left \{ { - 2 + \sqrt{5 + x} } , x \geqslant 0 \atop { - 2 + \sqrt{5 - x} , \: x < 0} \right.

внешний модуль раскрывается основываясь на сравнении значения квадратного корня и 2 при значениях х из заданных интервалов.

из вида функции и свойств квадратного корня мы видим , что
при х>0 функция возрастает
при х<0 функция убывает

причём минимум функции будет при х=0

y (0)= |2 - \sqrt{5 + |0| } | = \\ = \sqrt{5} - 2 \\

Функции , составляющие y(x)

y_1 = { - 2 + \sqrt{5 + x}} \\ y_2 = { - 2 + \sqrt{5 - x}}
строятся на основе функции
\sqrt{x}
соответствующими сдвигами вдоль осей ординат и абсцисс

Финальный график - см на фото

удачи!

Постройте график функции. укажите область определения, множество значений, промежутки монотонности,
4,7(95 оценок)
Ответ:

50 км/ч.

Объяснение:

300 : 3 = 100 (км) - проехал поезд до остановки.

300 - 100 = 200 (км) - проехал поезд после остановки.

Пусть х км/ч - скорость поезда до остановки,

тогда (х - 10) км/ч - скорость поезда после остановки.

Составим уравнение:

\frac{100}{x}+\frac{200}{x-10}+1 =8\\

100(x - 10) + 200х + х(х - 10) =8х(х - 10)

100х - 1000 + 200х + х² - 10х = 8х² - 80х

8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0

7х² - 370х + 1000 = 0

D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²

x_{1}=\frac{370+330}{2*7} =\frac{700}{14}=50\\\\x_{2}=\frac{370-330}{2*7} =\frac{40}{14}=2\frac{6}{7}

Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.

Значит, скорость поезда до остановки была 50 км/ч.

4,6(49 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ