М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
riad170310
riad170310
06.04.2022 00:27 •  Алгебра

Розв'яжіть нерівність 4^x-6*2^x+8< 0

👇
Ответ:
ksushaksenia11
ksushaksenia11
06.04.2022
2^{2x} - 6*2^x + 8 \ \textless \ 0\\&#10;2^x = t\\&#10;t^2-6t+8\ \textless \ 0\\&#10;D = 36-32=4\\&#10;t_1=2\\&#10;t_2=4\\&#10;2 \ \textless \ 2^x \ \textless \ 4\\&#10;2^1 \ \textless \ 2^x \ \textless \ 2^2\\&#10;1 \ \textless \ x \ \textless \ 2

ответ: x ∈ (1; 2)
4,6(27 оценок)
Открыть все ответы
Ответ:
9яна2005
9яна2005
06.04.2022
(g-x)(x+3)>=0
(x-g)(x+3)<=0
данное выражение имеет два корня:
x1=-3 и x2=g
если решать данное неравенство методом интервалов, то на координатной оси получатся две точки -3 и g. И решение данного неравенства будет между этими точками.
Рассмотрим 2 случая:
1) g>-3 - точка g расположена правее -3, т.е g=-2;-1;0;1;2... и промежуток [-3;g]
При g=-2 в данном промежутке будет 2 целых решения: -2 и -3.
2) g<-3 - точка g расположена левее -3, т.е g=-4;-5;-6;-7... и промежуток [g;-3].
При g=-4 в данном промежутке будет два целых решения: -4;-3
ответ: g1=-2; g2=-4
4,8(31 оценок)
Ответ:
ArianTop
ArianTop
06.04.2022
Функция нам задана:
f(x)= \frac{(x^2+3x+2)^5}{3x+ \sqrt{2} + \sqrt{5} }
Вместо х подставляем 1-2х
f(1-2x)= \frac{((1-2x)^2+3(1-2x)+2)^5}{3(1-2x)+ \sqrt{2} + \sqrt{5} } = \frac{(1-4x+4x^2+3-6x+2)^5}{3-6x+ \sqrt{2} + \sqrt{5}} = \\ = \frac{4x^2-10x+6}{-6x+3+ \sqrt{2} + \sqrt{5}}
И решаем неравенство
\frac{4x^2-10x+6}{-6x+3+ \sqrt{2} + \sqrt{5}} \leq 0 \\ \frac{2x^2-5x+3}{-6x+3+ \sqrt{2} + \sqrt{5}} \leq 0
Так как дробь меньше 0, то у числителя и знаменателя разные знаки.
1)
{ 2x^2 - 5x + 3 ≤ 0
{ -6x + 3 + √2 + √5 > 0
Раскладываем на множители 1 неравенство
{ (x - 1)(2x - 3) ≤ 0
{ 6x < 3 + √2 + √5
Получаем
{ x ∈ [1; 3/2]
{ x < (3 + √2 + √5)/6 ≈ 1,108 < 3/2
Решение: x1 ∈[1; (3 + √2 + √5)/6)

2)
{ 2x^2 - 5x + 3 ≥ 0
{ -6x + 3 + √2 + √5 < 0
Решаем точно также
{ (x - 1)(2x - 3) ≥ 0
{ 6x > 3 + √2 + √5
Получаем
{ x ∈ (-oo; 1] U [3/2; +oo)
{ x > (3 + √2 + √5)/6 ≈ 1,108 < 3/2
Решение: x ∈ [3/2; +oo)
ответ: x ∈ [1; (3 + √2 + √5)/6) U [3/2; +oo)
4,5(34 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ