(g-x)(x+3)>=0 (x-g)(x+3)<=0 данное выражение имеет два корня: x1=-3 и x2=g если решать данное неравенство методом интервалов, то на координатной оси получатся две точки -3 и g. И решение данного неравенства будет между этими точками. Рассмотрим 2 случая: 1) g>-3 - точка g расположена правее -3, т.е g=-2;-1;0;1;2... и промежуток [-3;g] При g=-2 в данном промежутке будет 2 целых решения: -2 и -3. 2) g<-3 - точка g расположена левее -3, т.е g=-4;-5;-6;-7... и промежуток [g;-3]. При g=-4 в данном промежутке будет два целых решения: -4;-3 ответ: g1=-2; g2=-4
ответ: x ∈ (1; 2)