Предположим, что х часов - это время работы первой бригады, тогда (х+4) часа - время работы второй бригады, примем всю работу за 1
согласно этим данным составим и решим уравнение для совместной работы:
/·24x(x+4)
Cчитаем дискриминант:
Дискриминант положительный
Уравнение имеет два различных корня:
не удовлетворяет условию задачи, так как отрицательное время быть не может
х=8 (ч) - I бригада.
х+4=8+4=12 (ч) - II бригада.
Следовательно первая бригада заасфальтирует участок дороги за 8 часов, а вторая за 12 часов.
x² - (x - 1)² = 0
x² - (x² - 2x + 1) = 0
x² - x² + 2x - 1 = 0
2x - 1 = 0
Как видим уравнение не квадратное, а линейное.
2x = 1
x = 0,5