Объяснение:
15.6
Выносим общую скобку как множитель.
15.9
Тут необходимо сначала разложить на множители, а затем воспользоваться правилом:
Если произведение двух или более множителей равно 0, то хотя бы один из множителей равен 0.
1)
Произведение двух множителей равно 0, значит или 1 множитель равен 0, или второй множитель равен 0.
или
или
или
Мы решили! Это и есть ответ!
2)
Произведение двух множителей равно 0, значит или 1 множитель равен 0, или второй множитель равен 0.
или
или
или
Мы решили! Это и есть ответ!
3)
Произведение двух множителей равно 0, значит или 1 множитель равен 0, или второй множитель равен 0.
или
или
или
Мы решили! Это и есть ответ!
4)
Произведение двух множителей равно 0, значит или 1 множитель равен 0, или второй множитель равен 0.
или
или
или
Мы решили! Это и есть ответ!
y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении