1. а)Х_1=2 1/2
Х_2=-1 1/2
б)Х_1=9
Х-2=-9
Объяснение:
2.
а)4х^2-4х-15=0
a=4 b=-4 c=-15
D =b^2-4ac
D=4^2-4×4×(-15)=16-240=256=16^2>0
X_1=-(-4)+16/2×4=20/8=5/2=2 1/2
X_2=-(-4)-16/2×4=-12/8=-3/2=-1 1/2
D/4=(4/2)^2-4×(-15)=2^2+60=64=8^2>0
X_1=(2+8)/4=10/4=5/2=2 1/2
X_2=(2-8)/4=-6/4=-3/2=-1/1/2
ответ: Х_1=2 1/2
Х_2=-1 1/2
б)Х^2-9^2=0
Применяем формулу разности квадратов:
(Х-9)(Х+9)=0
Х-9=0
Х_1=9
Х+9=0
Х_2=-9
ответ: Х_1=9
Х_2=-9
1.
Упростить:
=(2×(3×9)^1/2-(3×100)^1/2+(2×9)^1/2)×
×(3^1/2)+(24)^1/2=(2×3×(3^1/2)-10×(3^1/2)+
+3×(2^1/2))×(3^1/2)=
=6×3-10×3+3×(6^1/2)+(4×6)^1/2=
=18-30+3×(6^1/2)+2×(6^1/2)=
=-12+5(6^1/2)
ответ: -12+5(6^1/2)
1. а)Х_1=2 1/2
Х_2=-1 1/2
б)Х_1=9
Х-2=-9
Объяснение:
2.
а)4х^2-4х-15=0
a=4 b=-4 c=-15
D =b^2-4ac
D=4^2-4×4×(-15)=16-240=256=16^2>0
X_1=-(-4)+16/2×4=20/8=5/2=2 1/2
X_2=-(-4)-16/2×4=-12/8=-3/2=-1 1/2
D/4=(4/2)^2-4×(-15)=2^2+60=64=8^2>0
X_1=(2+8)/4=10/4=5/2=2 1/2
X_2=(2-8)/4=-6/4=-3/2=-1/1/2
ответ: Х_1=2 1/2
Х_2=-1 1/2
б)Х^2-9^2=0
Применяем формулу разности квадратов:
(Х-9)(Х+9)=0
Х-9=0
Х_1=9
Х+9=0
Х_2=-9
ответ: Х_1=9
Х_2=-9
1.
Упростить:
=(2×(3×9)^1/2-(3×100)^1/2+(2×9)^1/2)×
×(3^1/2)+(24)^1/2=(2×3×(3^1/2)-10×(3^1/2)+
+3×(2^1/2))×(3^1/2)=
=6×3-10×3+3×(6^1/2)+(4×6)^1/2=
=18-30+3×(6^1/2)+2×(6^1/2)=
=-12+5(6^1/2)
ответ: -12+5(6^1/2)
Объяснение:
Задание 2.
а) Координату х=5 будут иметь все точки , лежащие на прямой , которая параллельна оси ординат и проходит через т.А на оси абсцисс. Любая другая точка координатной плоскости имеет абсциссу отличную от х=5
б) Координату у=-3 будут иметь все точки , лежащие на прямой , которая параллельна оси абсцисс и проходит через т.С на оси ординат. Любая другая точка координатной плоскости имеет ординату отличную от у=-3
рисунок 1 во вложении
Задание 3.
а) На координатной плоскости неравенство х ≥ 4 задаст полуплоскость , которая будет расположена правее прямой х=4. Все точки этой полуплоскости будут иметь абсциссу равную 4 и больше
рисунок 2 во вложении
б) Двойное неравенство 0 ≤ у ≤ 5 задает на координатной плоскости две горизонтальные полосы , которые имееют ординату 0 и 5
рисунок 3 во вложении
Задание 4.
а) у = х;
найдем точки и построим график
х=0, у=0
х=3 , у=3
х=-3, у= -3
б) –3 ≤ х ≤ 3.
неравенство задает на координатной плоскости две вертикальные полосы, которые имею абсциссу 3 и -3
Изобразим множество точек на координатной плоскости
рисунок 4 во вложении
Задание 5
Решение во вложении
Задание 6
Если | x | ≤ 5 , значит -5 ≤ х ≤ 5, т.е. х ϵ [-5 ; 5]
Отметим этот промежуток т.А и т.В на координатной прямой ( рис. 5 во вложении)
Отметим промежуток –7 ≤ x ≤ 1 , т.е. х ϵ [ -7 ; 1] на координатной прямой т.С и т. D
Для того, чтобы определить границы промежутков [-5; 5] и [-7; 1] сравним левые и правые границы этих промежутков. Поскольку -7 < -5, а 5 >1 , то искомое пересечение имеет вид: х ϵ[-5; 1]