М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
BloodyMary001
BloodyMary001
28.07.2020 03:11 •  Алгебра

 не помню как делать cos a/2-sin a/2 при a=п/2 15

👇
Ответ:
васеня220044
васеня220044
28.07.2020
Cos a/2=cos pi/2/2=cos(pi/4)
cos(pi/4)=квадр. корень(2)/2
sin a/2=sin(pi/4)
sin(pi/4)=кор(2)/2
кор(2)/2-кор(2)/2=0
ответ: 0
4,5(53 оценок)
Открыть все ответы
Ответ:
serikon1
serikon1
28.07.2020

Верно утверждение № 3.

Объяснение:

1) Неверно.

Один из признаков равенства треугольников звучит так: если сторона и два прилежащих к ней угла равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

2) Неверно.

По равенству трех углов (а на самом деле достаточно равенства двух углов) доказывается только подобие треугольников.

3) Верно.

Фраза "не превосходит 90°" означает, что сумма двух острых углов либо равна 90°, либо меньше 90°. Сумма же острых углов в прямоугольном треугольнике равна 90°.

4,4(6 оценок)
Ответ:
143424
143424
28.07.2020
Найдите все значения параметра а

\displaystyle (x^4+4x^2-10)=(a+3)*x^2

не имеет корней на промежутке [-√5;2)

Преобразуем наше уравнение

\displaystyle x^4+x^2(4-a-3)-10=0

x^4+x^2(1-a)-10=0

введем замену переменной

\displaystyle t=x^2

тогда уравнение примет вид

\displaystyle t^2+t(1-a)-10=0 где t≥0

Для того, чтобы уравнение имело решение, необходимо чтобы D>0
найдем D

\displaystyle D=(1-a)^2+40=1-2a+a^2+40=a^2-2a+41

посмотрим при каких а дискриминант будет больше 0

\displaystyle a^2-2a+41\ \textgreater \ 0


очевидно что при любых а 

найдем корни уравнения

\displaystyle t_1= \frac{-(1-a)+ \sqrt{a^2-2a+41}}{2}

\displaystyle t_2= \frac{-(1-a)- \sqrt{a^2-2a+41}}{2}

так как t≥0
проверим наши корни

\displaystyle a-1- \sqrt{a^2-2a+41}\ \textgreater \ 0

\displaystyle a-1\ \textgreater \ \sqrt{a^2-2a+41}

\displaystyle a^2-2a+1\ \textgreater \ a^2-2a+41

очевидно что этот корень нам не подходит
проверив аналогично убедимся что второй корень нам подходит
т.е. 
\displaystyle t=x^2= \frac{a-1+ \sqrt{a^2-2a+41}}{2}

Теперь найдем корни уравнения

\displaystyle x_1= \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}}

\displaystyle x_2=- \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}}

так как наш промежуток [-√5;2) то положительный корень при любых а не попадет в этот промежуток.
Достаточно рассмотреть только отрицательный корень

\displaystyle - \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}} \leq-\sqrt{5}
\displaystyle - \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2} }\ \textgreater \ -2

\displaystyle \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2} } \geq\sqrt{5}
\displaystyle \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}}\ \textless \ 2

решим эти два неравенства
\displaystyle \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}}\ \textless \ 2

a-1+ \sqrt{a^2-2a+41} \ \textless \ 8

 \sqrt{a^2-2a+41}\ \textless \ 9-a

a^2-2a+41\ \textless \ 81-18a+a^2
\displaystyle a\ \textless \ 2.5

\displaystyle \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}} \geq \sqrt{5}

a-1+ \sqrt{a^2-2a+41} \geq 10

 \sqrt{a^2-2a+41} \geq 11-a

a^2-2a+41 \geq 121-22a+a^2

a \geq 4

 ответ (-оо;2.5)∪[4;+oo)
4,5(36 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ