Х0=-b/2a a)x0=-8/(-2)=4 y0=-(4)^2+8*4-15=-16+32-15=1 координаты вершины:(4;1) б)х0=8/2=4 У0=4^2-8*4+16=16-32+16=0 координаты вершины:(4;0) В)координаты вершины:(0;-8) вроде все так ,но лучше перепроверить
Решаем уравнение х ( х² - 64 ) = 0 Произведение двух множителей равно нулю, когда хотя бы один из множителей равен нулю: х = 0 или х² - 64 =0 (х-8)(х+8)=0 х - 8 = 0 или х + 8 = 0 х = 8 или х = - 8 Отмечаем точки х=0 х = 8 и х = - 8 на числовой прямой и находим знаки функции у = х( х²- 64) на каждом промежутке. Можно найти на одном промежутке и потом знаки будут чередоваться. f ( 10) = 10·(10²- 64)>0 - + - + (-8)(0)(8) ответ. х∈ (-∞; - 8) U (0; 8)
Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
a)x0=-8/(-2)=4
y0=-(4)^2+8*4-15=-16+32-15=1
координаты вершины:(4;1)
б)х0=8/2=4
У0=4^2-8*4+16=16-32+16=0
координаты вершины:(4;0)
В)координаты вершины:(0;-8)
вроде все так ,но лучше перепроверить