М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Grif69
Grif69
25.05.2020 14:28 •  Алгебра

Решите систему уравнений: 1) x^2+3xy=10 2x-y=3 2)x^2+y^2=25 xy=-12

👇
Ответ:
Айсулу2002
Айсулу2002
25.05.2020
1) y=2x-3;
x^2+3x(2x-3)=10;
x^2+6x^2-9x-10=0;
7x^2-9x-10=0;
D=361;
x1=9+19/14=2;
x2=-10/14=-5/7
y1=4-3=1;
y2=-5/7-3=-20/7
ответ: (2;1) и (-5/7;-20/7)
2) x^2+2xy+y^2-2xy=25
(x+y)^2-2xy=25
(x+y)^2+24=25
(x+y)^2=1
(x+y)^2-1^2=0
(x+y-1)(x+y+1)=0
1) x+y=1
xy=-12
x=-12/y
-12/y+y=1
y^2-y-12=0;
D=49; y1=4; y2=-3
x1=-12/4=-3
x2=-12/-3=4
2) x+y+1=0;
xy=-12
x=-12/y
y^2+y-12=0;
D=49
y1=3; y2=-4
x1=-12/3=-4;
x2=-12/-4=3
ответ: (-3;4), (4;-3), (-4;3) и (3;-4)
4,5(7 оценок)
Открыть все ответы
Ответ:
dana085
dana085
25.05.2020

Объяснение:

выражение в квадратном корне должно давать положительный результат, иначе выражение не

имеет смысла

1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)

2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)

3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)

5) √25х. х должен быть 0 или положительное значение:

х≥0, поэтому х (0; +∞)

4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:

х (–∞; –1)

6) √0,01х, х≥0; х (0; +∞)

7)

\sqrt{ \frac{ - 7x}{5} }

х ≥ 0; х (–∞; 0)

8)

\sqrt{81x {}^{2} }

х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)

4,5(89 оценок)
Ответ:
143General
143General
25.05.2020

Объяснение:

выражение в квадратном корне должно давать положительный результат, иначе выражение не

имеет смысла

1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)

2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)

3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)

5) √25х. х должен быть 0 или положительное значение:

х≥0, поэтому х (0; +∞)

4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:

х (–∞; –1)

6) √0,01х, х≥0; х (0; +∞)

7)

\sqrt{ \frac{ - 7x}{5} }

х ≥ 0; х (–∞; 0)

8)

\sqrt{81x {}^{2} }

х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)

4,6(40 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ