В решении.
Объяснение:
Первое задание.
Координаты точек пересечения графиком осей координат:
(-2; 0) и (0; -4)
Уравнение функции у = kx + b
Подставить в это уравнение первые известные значения х= -2 и у=0.
Получим первое уравнение системы:
k * (-2) + b = 0;
Подставить в это же уравнение вторые значения х= 0 и у= -4.
Получим второе уравнение системы:
k * 0 + b = -4
Решить систему:
k * (-2) + b = 0;
k * 0 + b = -4
Из второго уравнения b = -4, подставить в первое и вычислить k:
-2k - 4 = 0
-2k = 4
k = 4/-2
k = -2.
Подставить вычисленные значения k и b в уравнение у=kx + b и получить нужное уравнение:
у = -2х - 4.
Второе задание.
Координаты точек пересечения графиком осей координат:
(-4; 0) и (0; 2)
Уравнение функции у = kx + b
Подставить в это уравнение первые известные значения х= -4 и у=0.
Получим первое уравнение системы:
k * (-4) + b = 0;
Подставить в это же уравнение вторые значения х= 0 и у= 2.
Получим второе уравнение системы:
k * 0 + b = 2
Решить систему:
k * (-4) + b = 0;
k * 0 + b = 2
Из второго уравнения b = 2, подставить в первое и вычислить k:
-4k + 2 = 0
-4k = -2
k = -2/-4
k = 0,5.
Подставить вычисленные значения k и b в уравнение у=kx + b и получить нужное уравнение:
у = 0,5х + 2.
х|x| = x
При х ≥ 0 уравнение имеет вид: х*x = x
х² = x
х² - x = 0
х(х -1) = 0
х = 0 или х = 1
(т.е при х ≥ 0 уравнение имеет два корня)
При х < 0 уравнение имеет вид: х*(-x) = x
- х² = x
- х² - x = 0
- х(х +1) = 0
х = 0 или х = - 1
(т.е при х < 0 уравнение тоже имеет два корня)
Имеем:
при х ≥ 0 при х < 0
х = 0 или х = 1 или х = 0 или х = - 1
=> корни: х = 0 или х = 1 или х = - 1
ответ: 3.
тогда:
cos6γcos4γ-sin6γsin4γ=cos(6γ+4γ)=cos10γ