1(б) x^2 -6x-7=0
D1=(-3)^2-1*(-7)=16 => корень из D1=4
x1=3+4=7 x2=3-4=-1
x^2-9x+14=0
D=(-9)^2-4*1*14=25 => корень из D=5
x1=9+5/2=7 x2=9-5/2=2
Записываем дробь с полученными корнями.
(x-7)(x+1)/(x-7)(x-2)=x+1/x-2
2(б) 3x^2-16x+5=0
D1=(-8)^2-3*5=49 => корень из D1=7
x1=8+7/3=5 x2=8-7/3=1/3
Нижнюю часть сократим на x, но будем помнить, что за этим x скрывается ещё один корень - 0.
x^2-4x-5=0
D1=(-2)^2-1*(-5)=9 => корень из D1=3
x1=2+3=5 x2=2-3=-1 x3=0
Подставляем.
(x-5)(x-1/3)/(x-5)(x+1)x=x-1/3/x(x+1)
расстояние АВ= S
скорость первого мотоциклиста -v
время 1мотоц t= S/v
Второй
проехал первую половину пути со скоростью v-20
за время t1=(S/2)/(v-20)
вторую половину пути со скоростью 126 км/ч
за время t2=(S/2)/126
t=t1+t2
S/v=(S/2)/(v-20) +(S/2)/126
1/v=1/(2*(v-20)) +1/252
1/v-1/252=1/(2*(v-20))
(252-v)/252v= 1/(2*(v-20))
(252-v)(2*(v-20))=252v
(252-v)(v-20)=126v
v^2-146v+5040
после решения квадратного уравнения
v = 56 или v=90
по условию скорость больше 60 км/ч.
ответ скорость первого мотоциклиста 90 км/ч.