а) 0.36; б) 0.91; в) 0.55
Объяснение:
а) ровно одно попадание
(первый выстрел удачный, второй и третий нет либо
второй удачный, первый и третий нет либо
третий удачный, первый и второй нет)
0.4*(1-0.5)*(1-0.7)+(1-0.4)*0.5*(1-0.7)+(1-0.4)*(1-0.5)*0.7=
0.4*0.5*0.3+0.6*0.5*0.3+0.6*0.5*0.7=
0.06+0.09+0.21=0.36
б) хотя бы одно попадание
(1 - ни разу не промахнулся)
1-(1-0.4)*(1-0.5)*(1-0.7)=1-0.6*0.5*0.3=1-0.09=0.91
в) ( два выстрела удачный, третий нет, либо
все три удачные)
0.4*0.5*(1-0.7)+(1-0.4)*0.5*0.7+0.4*(1-0.5)*0.7+0.4*0.5*0.7=
0.4*0.5*0.3+0.6*0.5*0.7+0.4*0.5*0.7+0.4*0.5*0.7=
0.06+0.21+0.14+0.14=0.55
(0.91-0.36=0.55)
1) f(x) =x⁴ + 4·sin²x·cos²x - чётная функция
2) f(x) =x⁴ + 4·sin²x·cos²x - нечётная функция
Объяснение:
Определение. Функция f(x), x∈X, называется чётной, если для любого значения x из множества X выполняется равенство: f(–x) = f(x).
Определение. Функция f(x), x∈X, называется нечётной, если для любого значения x из множества X выполняется равенство: f(–x) =–f(x).
Известно, что функция:
sinx – нечётная, cosx - чётная, tgx – нечётная, ctgx – нечётная.
Решение.
1) Функция f(x) =x⁴ + 4·sin²x·cos²x определена при всех x∈R. Проверим по определению при x∈R:
f(–x) = (–x)⁴ +4·sin²(–x)·cos²(–x) = x⁴ +4·(–sinx)²·cos²x =
= x⁴ +4·sin²x·cos²x = f(x), то есть f(–x) = f(x) и функция – чётная;
2) Функция f(x) = (tgx – ctgx)/cosx определена при всех x∈X=R\{πn, π/2+πk, n∈Z, k∈Z}. Проверим по определению при x∈X:
f(–x) = (tg(–x) – ctg(–x))/cos(–x) = (–tgx –(–ctgx))/cosx =
= –(tgx – ctgx)/cosx = –f(x), то есть f(–x) = –f(x) и функция – нечётная.