Даны вершины треугольника А(-1;2;1),В(3;0;-4),С(2;0;0).
Решение имеет 2 варианта (надо было оговорить в задании - какой нужен).
1) По теореме косинусов. Для этого находим длины сторон треугольника. Квадрат Сторона
AB = √((xB-xA)²+(yB-yA)²+(zB-zA)²) = 16 4 25 45 6,708203932
BC = √((xC-xB)²+(yC-yB)²+(zC-zB)²) = 1 0 16 17 4,123105626
AC = √((xC-xA)²+(yC-yA)²+(zC-zA)²) = 9 4 1 14 3,741657387.
cos A = (b² + c² - a²)/(2bc) = (14+45-17)/(2√14*√45) = 0,836660027.
cos B = (a² + c² - b²)/(2ac) = (17+45-14)/(2√17*√45) = 0,867721831,
cos C = (a² + b² - c²)/(2ab) = (17+14-45)/(2√17*√14) = -0,453742606.
Косинус угла С отрицательный, значит, этот угол тупой.
ответ: треугольник тупоугольный
2) По векторам.
AB = (3-(-1); 0-2; -4-1) = (4; -2; -5). Модуль равен √45.
BC = (2-3; 0-0; 0-(-4)) = (-1; 0; 4). Модуль равен √17.
AC = (2-(-1); 0-2; 0-1) = (3; -2; -1). Модуль равен √14.
Векторы ВА, СВ и СА имеют обратные знаки координат).
cos A = (4*3 + (-2)*(-2) + (-5)*(-1))/(√45*√14) = 21/√630 = 0,836660027.
cos B = (-4*(-1) + 2*0 + 5*4)/(√45*√17) = 24/√765 = 0,867721831.
cos C = (1*(-3) + 0*2 + (-4)*1)/(√17*√14) = -7/√238 = -0,453742606.
Вывод о виде треугольника сохраняется, как и в первом варианте.
.
.
ответ:Обозначим собственную скорость лодки через переменную х.
Следовательно расстояние, которое проплыла лодка по течению водного потока, мы можем выразить через 2,4(х + 3), расстояние, которое проплыла лодка против течения водного потока, мы можем выразить через 0,8(х - 3).
Зная, что расстояние, которое преодолела лодка по течению, больше на 19,2 км, составим уравнение и определим собственную скорость лодки:
2,4(х + 3) - 0,8(х - 3) = 19,2;
1,6х = 9,6;
х = 6.
ответ: Собственная скорость лодки 6 км/ч.
Объяснение: вроде так
n²+n-156=0 D=1+4*156=1+624=625 √D=25
n1=1/2[-1+25]=12 n2=1/2[-1-25]=-13 не натуральное
ответ 12,13
2. a=2√6 b =c-2
a²+b²=c² 24+(c-2)²=c² 24+c²-4c+4=c² 4c=28 c=7 b=c-2=5