2^(n-1) *(11+2) +5^(n-2) *(1+5²)= =13 *2^(n-1)+26*5^(n-2)= =13*(2^(n-1)+2*5^(n-2)) исходное выражение раскладывается на множители, один из которых 13, следовательно исходное выражение кратно 13.
До момента начала движения мотоциклиста автомобиль проехал x*t км, по формуле: V=S/t, где V - скорость, S - путь, t - время, следовательно S=V*t, по условию задачи это x*t мотоциклисту потребовалось времени до встречи t мот= d/y, где по условию задачи d - путь мотоциклиста до встречи, а у - скорость смотри формулу V=S/t => t+S/V Общее расстояние между пунктами M и N складывается из трех частей: путь автомобиля до момента движения мотоциклиста, он нам известен x*t путь мотоциклиста до встречи, по условию это d путь автомобиля от момента движения мотоциклиста до встречи с ним, он нам не известен, но может быть вычислен по формуле s=V*T, где V это скорость автомобиля, по условию - x T - это время движения автомобиля до встречи, оно равно времени движения мотоциклиста. Мы его вычислили t мот=d/y, т.о. неизвестный отрезок пути равен s=x*d/y общее расстояние между пунктами равно S(MN)=x*t+x*d/y+d
А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
=13 *2^(n-1)+26*5^(n-2)=
=13*(2^(n-1)+2*5^(n-2))
исходное выражение раскладывается на множители, один из которых 13, следовательно исходное выражение кратно 13.