Является ли число 28 членом арифметической прогресии -2; 3; 8; если является, то укажите его номер а)не является б)является, номер 7 в)является, номер 6 9 класс
Конечно, эту задачу можно решить простым перебором, заметив, что члены прогрессии увеличиваются на 5 (то есть разность этой прогрессии d=5): -2; 3; 8; 13; 18; 23; 28⇒ является, причем под номером 7.
Если же мы хотим уметь делать подобную задачу при любых данных, то воспользуемся известной формулой, которую я выводить не буду, хотя это и совсем просто: a_n=a_1+(n-1)d
Подставим сюда a_1= - 2; d=5; a_n=28; получаем уравнение на n: 28=-2+(n-1)5; 5n=35; n=7 (а вот если бы n получалось нецелое, мы сделали бы вывод,что 28 не является членом прогрессии)
Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод: многочлен а³+3а²+2а кратен числу 6.
-2; 3; 8; 13; 18; 23; 28⇒ является, причем под номером 7.
Если же мы хотим уметь делать подобную задачу при любых данных, то воспользуемся известной формулой, которую я выводить не буду, хотя это и совсем просто:
a_n=a_1+(n-1)d
Подставим сюда a_1= - 2; d=5; a_n=28; получаем уравнение на n:
28=-2+(n-1)5; 5n=35; n=7 (а вот если бы n получалось нецелое, мы сделали бы вывод,что 28 не является членом прогрессии)