Непустое подмножество линейного пространства называется линейным подпространством, если линейные операции, то есть сложение векторов и умножение их на число, не выводят за пределы этого множества. Аксиомы линейного пространства для этого множества проверять не обязательно - они будут выполнены автоматически.
1) Умножив такой вектор на отрицательное число, получим вектор, конец которого лежит во второй четверти. Поэтому ответ в первом случае отрицательный.
2) Складывая векторы, у которых координаты с четными номерами равны 0, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.
3) Складывая векторы, у которых координаты с четными номерами равны между собой, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.
sin²a=1-cos²a
1)sin²a-1=1-cos²a-1=-cos²a
2)(sina+cosa)²+(sina-cosa)²=sin²a+2sinacosa+cos²a+=sin²a-2sinacosa+cos²a=
1+1=2