Во втором баке было в 2 раза больше воды, чем в первом. когда в первый бак долили 20л воды, а из того отлили 15л воды, то воды в баках стало поровну. сколько воды было в каждом баке первоначально?
Пусть в первом баке х л. Тогда во втором баке 2х л. Если к первому добавили 20л А у второго отняли 15 То приравнивая получаем: х+20=2х-15 х=35л. 2*35=70л. ответ: в первом 35л. во втором 70л
Центр вписанного треугольника находится в точке пересечения биссектрис углов а стороны являются касательными к этой окружности Пусть <B=120° ; O - центр окружности ; T - точка касания ; OT ┴ BO ;радиус_ OT=r ; BO=c. ИЗ ΔOTB : <OBT =1/2*<B= 1/2*120° =60°. r =OT =BO*sin<OBT =c*sin60° =c√3/2 или OT ┴ BO ; <BOT =90°-<OBT =90°-1/2*<B=90°-1/2*120°= 90°-60°=30°. BT = BO/2=c/2(катет против угла 30°). ИЗ ΔOTB по теореме Пифагора : r =OT =√(BO² -BT²) =√(c² -(c/2))²)=√ (c² -c²/4)=√(3c²/4)=c√3/2
Центр вписанного треугольника находится в точке пересечения биссектрис углов а стороны являются касательными к этой окружности Пусть <B=120° ; O - центр окружности ; T - точка касания ; OT ┴ BO ;радиус_ OT=r ; BO=c. ИЗ ΔOTB : <OBT =1/2*<B= 1/2*120° =60°. r =OT =BO*sin<OBT =c*sin60° =c√3/2 или OT ┴ BO ; <BOT =90°-<OBT =90°-1/2*<B=90°-1/2*120°= 90°-60°=30°. BT = BO/2=c/2(катет против угла 30°). ИЗ ΔOTB по теореме Пифагора : r =OT =√(BO² -BT²) =√(c² -(c/2))²)=√ (c² -c²/4)=√(3c²/4)=c√3/2
2х во втором
х+20 стало впервом
2х-15стло во втором
х+20=2х-15
х-2х=-15-20
-х=-35
х=35л первый бак
2*35=70л второй бак