Находим производную. Она равна 12х²-6х=6х(2х-1)
Приравниваем производную к нулю. Получим два корня х=0 и х=0,5
Разбиваем на промежутки числовую ось (-∞;0)(0;0,5)(0,5;+∞)
С метода интервалов устанавливаем знак на каждом интервале.
на первом интервале и на последнем получились знаки плюс, на втором минус, значит, точка х= о- точка максимума, т.к. при переходе через нее производная меняет знак с плюса на минус, а сам максимум равен 4-0³-3*0²=0,
а х=0,5 - точка минимума, т.к. при переходе через нее производная меняет знак с минуса на плюс. Значение экстремума равно
4*(0,5)³-3*(0,5)²=0,5²*(4*0,5-3)=-0,25
Пусть х(км/ч) -скорость течения реки.
у(км/ч) -собственная скорость катера.
Тогда скорость катера по течению реки равна (х+у) км/ч,
а против течения (у-х) км/ч.
По условию по течению катер км), т.е. 5/3 х +5/3 у(км),
а против течения 24(км), т. е. 1,5 у -1,5 х (км).
(5/3 - это 1час 20мин.)
5/3 х +5/3 у =28 домножим на 3
1,5 у-1,5 х=24 домножим на 10
5х+5у=84
15у-15х=240 разделим на 3
5х+5у=84
5у-5х=80
Решим систему сложения двух уравнений:
10у = 164
5у-5х = 80
5у - 5х = 80
у = 16,4
5*16,4 - 5х = 80
у=16,4
-5 х = 80-82
у = 16,4
-5 х = -2
у = 16,4
х = 0,4
у = 16,4
ответ: 0,4 (км/ч) - скорость течения реки
1 делает выражение больше нуля