Відповідь:
Воспользуемся формулой
1) sin72°cos18°+sin18°cos72°
sin(а+b)=sin a*cos b+cos a* sin b
sin (72°+18°) = sin 90° = 1
2) cos81°cos21°+sin81°sin21°
3) cos15+cos75 = cos (15+75)= cos 90 = 0
4) sin 7 α - sin α = sin (7 α - α) = sin 6 α
5) cos 20 * cos 40
нужно умножить выражение на sin20, чтобы получился синус двойного угла, и тут же разделить это выражение. Думаю, если оставить все на словах, вы мало поймете, хорошо, запишу: cos20 * cos40 =1(2sin20*cos20)*cos40= 1*sin40*cos40*cos80/sin20
В общем, суть такая.
3) Первый предел равен нулю, т.к. знаменатель быстрее стремится к бесконечности. И есть правило, если х стремится к бесконечности, то смотрим на стандартный вид многочленов числителя и знаменателя, если степень многочлена, стоящего в числителе выше, чем степень многочлена знаменателя, то ответ бесконечность, если ниже, то нуль, у нас как раз этот случай, а если показатели степеней равны, то ищем при максимальных одинаковых показателях отношение коэффициентов.
6) Во втором пределе если подставить 3, числитель обратится в нуль, ровно как и знаменатель, эту неопределенность устраняют разложением числителя на множители (х-3)(х²+3х+9²)/(х-3) и сокращением на (х-3), тогда после сокращения получим 3²+3*3+9=27
9) У третьего предела такая же беда. Разложим по формуле числитель и вынесем за скобку общий множитель из знаменателя, убираем неопределенность путем сокращения дроби.
(х-1)²/(х*(х-1)(х+1))=(х-1)/(х*(х+1))=(1-1)/(1*2)=0
ответ 3) 0
6)27
9) 0
y ' = 0
3x² - 6x = 0 /:3
x² - 2x = 0
x (x - 2) = 0
1) x = 0
2) x - 2 = 0 ==> x = 2
ответ
2