4 вариант
Объяснение: рисуем числовую прямую и отмечаем точки -5 и 2 (нули неравенства (приравниваем каждую скобку к 0 и находим х, это и есть нули неравенства))
Далее берем точку правее от большего нуля и подставляем в неравенства (например 3). Общий знак неравенства + (первая скобка дает + при подстановке тройки и вторая, а +*+=+)
Потом берем точку посередине наших нулей (например 0) и также подставляем. Общий знак неравенства - ( первая скобка дает +, а вторая -, а +* - = -)
И последней подставляем точку левее меньшего нуля( например -6). Общий знак неравенства + (все по той же логике как было описано выше)
А поскольку неравенство запрашивает значения меньше нуля, то ответом будет промежуток с отрицательным знаком неравенства, то есть вариант 4
Сторона данного треугольника а(3) равна Р:3=6√3:3=2√3 дм
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с т.Пифагора.
x ≠ - 1,5
Решение
12x^2 + 1 - (4x - 1)(2x + 3) = 0
12x^2 + 1 - (8x^2 + 12x - 2x - 3) = 0
12x^2 + 1 - 8x^2 - 10x + 3 = 0
4x^2 - 10x + 4 = 0 /:(2)
2x^2 - 5x + 2 = 0
D = 25 - 16 = 9
x1 = ( 5 + 3)/4 = 8/4 = 2
x2 = ( 5 - 3)/4 = 2/4 = 0,5
ответ
0,5 ; 2