Сравните числа:
а) –2 < 5;
б) –6 > –7;
д) 36,5 > 0;
е) –8,2 < 0
Выполните сложение:
а) 1,4 + 4,12=5,52;
б) (–7) + 3,6=3,4;
в) –7 + 2=-5;
г) 2,6 + (–1,1)=1,5;
д) (–4,9) + (–1,1)=-6;
Выполните вычитание:
а) 6,37–(–14,1)=20,47;
б) 2,66–1,14=1,52;
в) –7,44–(–43,6)=36,16;
г) –4,09–1,71=-5,8
д) –7– 2=-9
Выполните умножение и деление:
2) -6:1=-6;
3) -0,5∙(-0,9)=0,45;
5) -5∙2∙(-3)=30
6) -0,96:0,016: (-1).=60
Решите уравнение:
1)(0,5+7х):5=8,5
1+14х=85
14х=84
х=6
2) х -5∙(4-х)=11
6х-20=11
6х=31
х=5,16
6. Напишите все целые решения у, если 8< │у│<12
+-11; +-10; +-9
x+2y+3z=0.
Формула, по которой находят расстояние от точки M_0(x_0;y_0;z_0) до плоскости Ax+By+Cz+D=0, выглядит так:
|Ax_0+By_0+Cz_0+D|/√(A^2+B^2+C^2)
В нашем случае получается |3+2-6|/√(1+4+9)=1/√14.
Но если хочется решить задачу более домашними методами, скажем, ограничивая себя скалярным произведением (оно же входит в школьную программу), то получается вот что. Координаты произвольной точки M на плоскости (совпадающие с координатами радиус-вектора этой точки; давайте вообще не будем различать точку и ее радиус-вектор) получаются из координат векторов a и b с линейной комбинации: αa+βb=(2α+β;-α+β;-β), а тогда вектор
AM будет иметь координаты AM(2α+β-3;-α+β-1;-β+2). Надо подобрать α и β так, чтобы AM был перпендикулярен плоскости, тогда его длина даст расстояние от M до плоскости. Перпендикулярность плоскости равносильна перпендикулярности векторам a и b, что проверяется с скалярного произведения. Получаем систему двух линейных уравнений, из которой находим α и β:
(AM,a)=5α+β-5=0
(AM,b)=α+3β-6=0,
откуда α=9/14; β=25/14.
Подставляя найденный значения α и β в вектор AM, получаем
AM=(1/14)(1,2,3)⇒|AM|=(1/14)√(1^2+2^2+3^2)=√14/14.
ответ: √14/14