У=-х²+4х+5=-(х-2)²+9 Строим у=-х²,сдвигаем ось ох на 9 единичный отрезков вниз и ось оу на 2 единичный отрезка влево.Вершина в точке (2;9)-точка максимума,точки пересечения с осями (0;5),(-1;0),(5;0) а) значение у,при x=4, у=5 x=-0,5; у≈3 б) значение х, при y=2; х≈-0,7 х≈4,7 в) нули функции; (0;5),(-1;0),(5;0) г) промежутки в которых у > 0 (-1;5) и в которых у <0; (-∞;-1) и (5;∞) д) промежуток,в котором функция возрастает, (-∞;2) убывает; (2;∞) е) область определения (-∞;∞) и область значений функции. (-∞;9]
Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
(x +3)^2+2(x-6)(x+3)+(x-6)^2=0
х^2+6х+9+(2х-12)((х+3)+х^2-12х+36=0
х^2+6х+9+2х^2+6х-12х-36+х^2-12х+36=0
4х^2-12х+9=0
(2х-3)^2=0
2х-3=0
х=3/2