Правило: Если произведение равно нулю, то один из множителей (или все) равен нулю.
Поэтому, мы должны приравнять каждую скобку к нулю и найти корни.
(2x-1)(6x+3)(7x+1)=0
2x-1= 0
2x=1
x=1/2
6x+3 = 0
6x=-3
x=-3/6=-1/2
7x+1 = 0
7x=-1
x=-1/7
ответ: 1/2, -1/2, -1/7
(5-2x)(3x-1)(6+5x)=0
5-2x = 0
-2x=-5
x=5/2
3x-1 = 0
3x=1
x=1/3
6+5x = 0
5x=-6
x=-6/5
ответ: 5/2, 1/3, -6/5
(4x-3)(2x+7)(7x+2)=0
4x-3 = 0
4x=3
x=3/4
2x+7 = 0
2x= -7
x= -7/2
7x+2 = 0
7x= -2
x= -2/7
ответ: 3/4, -7/2, -2/7
3x(2+5x)+x²(5x+2)=0
Раскроем скобки
6x+15x²+5x³+2x²=0
5x³+17x²+6x=0
Вынесем х за скобки
x(5x²+17x+6)=0
Далее действуем по тому же принципу:
x=0
Остальные корни находим через дискриминант:
5x²+17x+6=0
D= 169, √D= 13
x = -2/5
x= -3
ответ: 0, -2/5, -3
x²(4x-1)+5x(4x-1)=0
Можно попробовать другой Он будет быстрее и проще.
(4x-1) - общий множитель, который есть у каждого из слагаемых. Я выделила его жирным шрифтом.
Для удобства мы можем его вынести как обычное чисто.
(4x-1)(x²+5x)=0
(x²+5x) - в это скобке поместилось все то, что осталось после вынесения (4x-1)
Решаем:
(4x-1)(x²+5x)=0
4x-1=0
4x=1
x=1/4
x²+5x=0
x(x+5)=0
x=0
x+5=0
x= -5
ответ: 1/4, 0, -5
(1/5x+2)(2x-1/4)x=0
Тут тоже приравниваем каждый множитель к нулю:
x=0
1/5x+2 = 0
1/5x = -2
x = -10
2x-1/4 = 0
2x=1/4
x=1/8
ответ: 0, -10, 1/8
Нужно воспользоваться формулой разности квадратов практически во всех примерах: (a - b)(a + b) = a² - b².
Выполните умножение:
1) 5b(b - 1)(b + 1) = 5b(b² - 1) = 5b³ - 5b;
2) (c + 2)(c - 2) · 8c² = (c² - 4) · 8c² = 8c⁴ - 32c²;
3) (m - 10)(m² + 100)(m + 10) = (m - 10)(m + 10)(m² + 100) =
= (m² - 100)(m² + 100) = m⁴ - 10 000;
4) (a² + 1)(a² - 1)(a⁴ + 1) = (a⁴ - 1)(a⁴ + 1) = a⁸ - 1;
Упростите выражение:
1) (x + 1)(x - 1) - (x + 5)(x - 5) + (x + 1)(x - 5) = x² - 1 - (x² - 25) + x² - 5x + x - 5 = x² - 1 - x² + 25 + x² - 4x - 5 = x² - 4x + 19;
2) 81a⁸ - (3a² - b³)(9a⁴ + b⁶)(3a² + b³) = 81a⁸ - (3a² - b³)(3a² + b³)(9a⁴ + b⁶) = 81a⁸ - (9a⁴ - b⁶)(9a⁴ + b⁶) = 81a⁸ - (81a⁸ - b¹²) = 81a⁸ - 81a⁸ + b¹² = b¹².
1)Пусть x см - сторона одного квадрата
Тогда (x+3) см - сторона другого кв.
Т.к. по условию задачи сумма площадей квадратов равна 317 см^2, то составим уравнение:
x^2+(x+3)^2=317
2x^2+6x-308=0
x^2+3x-154=0
D(дискриминант)=9+4*154=625=25^2
x1=11 x2<0
11см - сторона одного квадрата
2)11+3=14(см)-сторона другого квадрата