Для начала упростим выражение. Для этого надо раскрыть скобки и привести подобные слагаемые. Теперь выполняем подстановку 1,5+(-3,5)=- (3,5-1,5)=-2. ответ: -2.
1)Найти область определения функции выражений с корнем четной степени нет знаменатель не равен нулю, значит х-1 не равен 0 значит х - не равен 1 область определения х є (-беск;1) U (1:+беск)
2)Чётность, нечётность функции y(x)=(x+2)^3/(x-1)^2 y(-x)=(-x+2)^3/(-x-1)^2 не равно y(x) y(-x)=(-x+2)^3/(-x-1)^2 не равно -y(x) y(x)=(x+2)^3/(x-1)^2 не является ни четной ни нечетной
3)Непрерывность y(x)=(x+2)^3/(x-1)^2 имеет точку разрыва при х=1
4)Критические точки y(x)=(x+2)^3/(x-1)^2 y'(x)={3*(x+2)^2*(x-1)^2-(x+2)^3*2*(x-1)}/(x-1)^4 = ={3*(x-1)-2*(x+2)}*(x+2)^2/(x-1)^3= =(3x-3-2x-4)*(x+2)^2/(x-1)^3= =(x-7)*(x+2)^2/(x-1)^3
y'(x)=0 при (x-7)*(x+2)^2/(x-1)^3=0 х=-2 x=1 х=7 - критические точки
5)Интервалы возрастания и убывания функции в точках x=1 и х = 7 производная меняет знак
интервалы возрастания х є (7; +беск) U (-2;1) U (-беск ;-2) интервалы убывания х є (1;7)
6)Экстремумы функции в точках x=1 и х = 7 производная меняет знак x=1 - локальный максимум х = 7- локальный минимум
7)Критические точки второго рода x=1 - критические точки 2 рода
8)Интервалы выпуклости и вогнутости функции надо считать вторую производную - лень
9)Точки перегиба то же самое
10)Асимптоты вертикальная асимптота у=1 наклонная асимптота ищем в виде у=ах+в а = lim(y)/x=1 b=lim(y-a*x)=8
В задаче отсутствуют некоторые разъясняющие моменты, например 7-й подъезд последний или нет... Ну да ладно, рассуждать будем следующим образом пусть х - кол-во квартир на одном этаже, тогда в одном подъезде будет 7*x, так как подъездов минимум 7, то общее кол-во квартир в этих семи подъездах будет 7*x*7, и по условию мы имеем номер квартиры 462, последний он или нет мы не знаем, поэтому можно записать следующее неравенство 49x≥462 ⇒ x≥10 (квартир на одном этаже) (462/49≈9,4, но так как кол-во квартир целое число, то получаем 10)
1,5-3,5=-2