М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vifi
vifi
23.08.2022 19:45 •  Алгебра

Heeelp! ! из квадрата был получен прямоугольник, у которого одна сторона на 4 см. меньше стороны квадрата, другая на 6 см больше стороны этого же квадрата. найдите сторону квадрата, если площадь прямоугольника равна 11 см^2

👇
Ответ:
Знаток228111
Знаток228111
23.08.2022
... надо подумать подожи шя все будет
4,5(22 оценок)
Открыть все ответы
Ответ:

 

Ясно, что одно неизвестное число = отрицательное, так как их произведение дано с отрицательным знаком. Составим систему:

|х-у=-9,7
|ху= -12,3

 

выразим х из первого уравнения. 

х=у-9,7
Подставим его во второе уравнение.

(у-9,7)у=-12,3
у²- 9,7у + 12,3=0 Решаем квадратное уравнение

D (Дискриминант уравнения) = b 2 - 4ac = 44.89
Дискриминант больше нуля (D > 0) => Уравнение имеет 2 вещественных решения (корня)
√D = 6.7

 

у1=8,2
у2=1,5
Из этих значений у найдем значения х

х-у= - 9,7
х1= 8,2 -9,7= -1,5
х2= 1,5 -9,7= -8,2

Проверим:
ху=
х1*у1= -1,5*8,2= -12,3

х2*у2= - -8,2*1,5= -12,3

4,5(52 оценок)
Ответ:
PaulinaWalters
PaulinaWalters
23.08.2022

Доказать тождество:

\dfrac{1 - \cos 2x + \sin 2x}{\sin \left(\dfrac{\pi }{2} + x \right) + \sin x} = 2\sin x

1. Определим область допустимых значений.

1.1. Выражение слева имеет смысл, если его знаменатель не равен нулю:

\sin \left(\dfrac{\pi}{2} + x \right) + \sin x \neq 0.

1.2. Используя формулу приведения \sin \left(\dfrac{\pi}{2} + \alpha \right) = \cos \alpha, получаем:

\cos x + \sin x \neq 0.

1.3. Умножим обе части на \dfrac{\sqrt{2} }{2} \colon

\dfrac{\sqrt{2}}{2} \cos x + \dfrac{\sqrt{2}}{2} \sin x \neq 0.

1.4. Поскольку \dfrac{\sqrt{2}}{2} = \sin \dfrac{\pi }{4} и \dfrac{\sqrt{2}}{2} = \cos \dfrac{\pi }{4}, то получаем:

\sin \dfrac{\pi}{4} \cos x + \cos \dfrac{\pi}{4} \sin x \neq 0.

1.5. Используя формулу синуса суммы \sin (\alpha + \beta )=\sin \alpha \cos \beta + \cos\alpha \sin \beta, получаем:

\sin \left(\dfrac{\pi}{4} + x \right) \neq 0.

1.6. Так как \sin t \neq 0 для t \neq \pi n, ~ n \in Z, то:

\dfrac{\pi }{4} + x \neq \pi n, ~ n \in Z.

1.7. Перенесём \dfrac{\pi}{4} в правую часть, изменив знак на противоположный:

x \neq -\dfrac{\pi }{4} + \pi n, ~ n \in Z.

2. Докажем данное тождество, работая с левой частью равенства.

2.1. Преобразуем данное выражение, применив формулу косинуса двойного угла \cos 2\alpha = \cos^{2}\alpha - \sin^{2} \alpha, синуса двойного угла \sin 2\alpha = 2\sin \alpha \cos \alpha и формулу приведения \sin \left(\dfrac{\pi}{2} + \alpha \right) = \cos \alpha \colon

\dfrac{1 - \cos^{2}x + \sin^{2}x + 2\sin x\cos x}{\cos x + \sin x}.

2.2. Замечаем в числителе следствие из основного тригонометрического тождества \sin^{2}\alpha = 1 - \cos^{2}\alpha \colon

\dfrac{\sin^{2}x + \sin^{2}x + 2\sin x\cos x}{\cos x + \sin x};

\dfrac{2\sin^{2}x + 2\sin x\cos x}{\cos x + \sin x}.

2.3. Вынесем в числителе общий множитель 2\sin x за скобки:

\dfrac{2\sin x(\sin x + \cos x)}{\cos x + \sin x}.

2.4. Сокращаем дробь на (\sin x + \cos x) \colon

2\sin x.

Тождество доказано.

ответ: \dfrac{1 - \cos 2x + \sin 2x}{\sin \left(\dfrac{\pi }{2} + x \right) + \sin x} = 2\sin x, если x \neq -\dfrac{\pi }{4} + \pi n, ~ n \in Z.

Пометка. Пункт под нахождением области допустимых значений не является обязательным при доказательстве тождества.

4,7(6 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ