М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
egorka22a
egorka22a
06.03.2021 23:04 •  Алгебра

При любом значении b решите уравнение : (x^2+(3b+2)x+2b^2 +3b+1) / (x^2 - 5x +4)=0

👇
Ответ:
an02092004
an02092004
06.03.2021
при любом значении b решите уравнение : 
(x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0

(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ;
ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4.
---
x²+(3b+2)x+2b² +3b+1=0 ;
D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0  всегда  имеет  решения :
x₁  = (-3 b- 2 - b)/2 = -1 - 2b , если  -1 - 2b ≠ 1  и -1 - 2b ≠ 4 ,
т.е. если b ≠ -1 и b ≠ -2,5.
x₂  = (- 3b - 2 +b)/2 = -1 - b , опять если  -1 - b ≠ 1 b и -1 - b ≠ 4 , .
т.е.  если b ≠ -2 и b ≠ - 5.

 * * * * P.S.
Можно было  в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить  x =1 и x = 4 в качестве корней;
 
1)  1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ 
b² +3b+2 =0 ⇒[ b = -2 ; b = -1 .
2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .

b ≠ -5 ; -2,5 ;  -2 ; - 1.
4,5(86 оценок)
Открыть все ответы
Ответ:
miku1368
miku1368
06.03.2021

Дана функция у = (х-1)²/x².

1.Область определения функции. D ∈ R : x ≈ 0.

2. Нули функции. Точки пересечения графика функции с осью ОХ.

График функции пересекает ось X при f = 0.

Значит, надо решить уравнение (х-1)²/x² = 0.

Решаем это уравнение (достаточно приравнять нулю числитель):

(х-1)² = 0, х-1 = 0, х = 1.

Точки пересечения с осью X: (1; 0).

График пересекает ось Y, когда x равняется 0.

Подставляем x = 0 в (x - 1)²/x².

Результат: (0 - 1)²/0² невыполним, значит, график не пересекает ось Оу.

3. Промежутки знакопостоянства функции.

Так как переменная в числителе и знаменателе в квадрате, то функция на всей числовой оси только положительна.

4. Симметрия графика (чётность или нечётность функции).

f(-x) = ((-x) - 1)²/((-x)²) = (x + 1)²/x² ≠ f(x) ≠ -f(-x).

Поэтому функция не чётная и не нечётная.

5. Периодичность графика. Не периодична.

6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - смотри приложение.

7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.

Первая производная: y' = (1/x²)*(2x - 2) - (2/x³)*(x - 1)²

или y' = (2x - 2)/x³.

Находим нули функции. Для этого приравниваем производную к нулю

(достаточно числитель): 2x-2 = 0

Откуда: x1 = 2/2 = 1.

(-∞ ;0) (0; 1) (1; +∞)

f'(x) > 0 f'(x) < 0 f'(x) > 0

функция возрастает функция убывает функция возрастает.

В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.

8. Интервалы выпуклости, точки перегиба.

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:

\frac{d^{2}}{d x^{2}} f{\left (x \right )} =

Вторая производная

\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right) = 0

Решаем это уравнение

Корни этого ур-ния

x_{1} = \frac{3}{2}

Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:

Точки, где есть неопределённость:

x_{1} = 0.

\lim_{x \to 0^-}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

\lim_{x \to 0^+}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

- пределы равны, значит, пропускаем соответствующую точку.

Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках

(-oo, 3/2]

Выпуклая на промежутках

[3/2, oo)

9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - смотри приложение.

10. Дополнительные точки, позволяющие более точно построить график - даны в приложении.

11. Построение графика функции по проведенному исследованию дан в приложении.

4,7(82 оценок)
Ответ:
lena1super
lena1super
06.03.2021
Так делать нельзя. Свойства логарифма этого не позволяют делать.
  Если вы вынесите знак минус в аргументе, то есть запишите
3-х=-(х-3)  , то всё равно никак не получиться сумма  (х+3).
Затем, если вы всё-таки вынесли из аргумента минус, то получаем теперь уже в аргументе произведение числа (-1) на разность (х-3). Можно было бы  воспользоваться свойством логарифма от произведения
log_{a}(b\cdot c)=log_ab+log_ac,\\ bc0, b0, c0, a0, a\ne 1
но аргумент должен быть строго положителен и не может быть, равным (-1).
  Свойство, по которому можно вынести знак перед логарифмом такое:
log_ab^c=c\cdot log_ab,\\a0,a\ne 1, b^c0, b0
То ест, если нужен минус перед логарифмом, то в аргументе логарифма должна быть степень с показателем, равным (-1).
4,4(56 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ