Область определения функции определится по условиям, что знаменатель не может быть нулем, а под корнем не должно быть отрицательное число.
а) 16x²-49<>0
(4x-7)(4x+7)<>0
4x<>7
x<>7/4
4x<>-7
x<>-7/4
x ∈ (-∞;-7/4)U(-7/4; 7/4)U(7/4; +∞)
y ∈ (-∞; +∞)
б) x²+4x+3>0
найдем корни
x²+4x+3 = 0
По теореме Виета
х1 = -3
х2 = -1
(x+3)(x+1)>0
x+3>0, x>-3
x+1>0, x>-1
x > -1
x+3<0, x<-3
x+1<0, x<-1
x < -3
x ∈ (-∞; -3]U[-1; +∞)
Поскольку подразумевается арифметический корень, то у ∈ [0; +∞)
Область определения функции определится по условиям, что знаменатель не может быть нулем, а под корнем не должно быть отрицательное число.
а) 16x²-49<>0
(4x-7)(4x+7)<>0
4x<>7
x<>7/4
4x<>-7
x<>-7/4
x ∈ (-∞;-7/4)U(-7/4; 7/4)U(7/4; +∞)
y ∈ (-∞; +∞)
б) x²+4x+3>0
найдем корни
x²+4x+3 = 0
По теореме Виета
х1 = -3
х2 = -1
(x+3)(x+1)>0
x+3>0, x>-3
x+1>0, x>-1
x > -1
x+3<0, x<-3
x+1<0, x<-1
x < -3
x ∈ (-∞; -3]U[-1; +∞)
Поскольку подразумевается арифметический корень, то у ∈ [0; +∞)
ОДЗ:
ОДЗ:
x∈(-2;-√3)U(-√3;0)U(0;√3)U(√3;2)
Так как в условиях ОДЗ
Замена переменной:
Применяем метод интервалов:
__+__ (0) __-__ [1] __-___(2) __+_
t < 0 или t=1 или t > 2
Обратный переход:
log₂(4-x²) < 0 или log₂(4-x²)=1 или log₂(4-x²)>2
log₂(4-x²) <log₂1 или log₂(4-x²)=log₂2 или log₂(4-x²)>log₂4
Логарифмическая функция с основанием 2 возрастающая, поэтому большему значению функции соответствует меньшее значение аргумента:
4-х²<1 или 4-x²=2 или 4-x²>4
x²>3 или x²=2 или x²<0
С учетом ОДЗ получаем ответ
(-2;-√3)U(√3;2)