Метод алгебраического сложения заключается в том, чтобы вычитая или же суммируя уравнения системы получить 1 уравнение с 1 неизвестным. Для этого в данном примере можно умножить первое уравнение на 3 с обеих сторон (заметим, что при этом значения неизвестных не изменятся, то есть полученное уравнение будет эквивалентно исходному). После этой операции система будет иметь такой вид:
Теперь, если отнимем от первого уравнения системы второе, то получим следующее: Как видите, мы получили уравнение с 1 неизвестным. Отсюда получаем , а х находим, подставив y в любое из уравнений системы. Удобнее в 1ое в данном случае. Получаем x + 4 * 5 = 9, откуда x = -11. ответ: x = -11; y = 5.
5. (a+c)(a-c)-b(2a-b)-(a-b+c)(a-b-c)=0 a²-ac+ac-c²-2ab+b²-(a²-ab-ac-ab+b²+bc+ac-bc-c²)=0 (знак минус перед скобкой меняет знаки на противоположный) a²-ac+ac-c²-2ab+b²-a+ab+ac+ab-b²-bc-ac+bc+c²=0 (cокращаем члены с противоположными знаками) -2ab+ab+ab=0 -2ab+2ab=0 (cокращаем) 0=0 Надеюсь, что еще не поздно
a7=a1+6d
a5=a1+4d
a3+a7=2a1+8d=2(a1+4d)=2a5
2a5=3/2+5/2=4
a5=2