Для начала определим точку пересечения прямых. Для этого приравняем оба уравнения:
-7/8х + 17 = -3/5 х - 16 -7/8х + 3/5х = -16 - 17 7/8х - 3/5х = 16+17 11/40 х = 33 х = 33 : 11/40 = 33 * 40/11 х = 120 Чтобы найти у подставляем х в любое из этих уравнений. Я выбрала второе. у = - 3/5 * 120 - 16 = -72-16 = -88 Точка пересечения: (120; -88) Если график уравнения проходит через эту точку, то подставив ее координаты мы должны получить верное выражение: у+рх =0 -88+120р=0 120р = -88 р = -88/120 р = -11/15 ответ: -11/15
2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
периметр 2(9 7/29+9 5/29)=2*(18 12/29)=36 24/29 м